ref 《测控电路 第五版》
一阶滤波器
- 一阶低通
- H ( s ) = K p ω c s + ω c H(s)=\frac{K_p\omega_c}{s+\omega_c} H(s)=s+ωcKpωc
- 一阶高通
- H ( s ) = K p s s + ω c H(s)=\frac{K_ps}{s+\omega_c} H(s)=s+ωcKps
二阶低通&高通滤波器
-
二阶低通滤波器
- H ( s ) = K p ω 0 2 s 2 + α ω 0 s + ω 0 2 H(s)=\frac{K_p\omega_0^2}{s^2+\alpha\omega_0s+\omega_0^2} H(s)=s2+αω0s+ω02Kpω02
-
二阶高通滤波器
- H ( s ) = K p s 2 s 2 + α ω 0 s + ω 0 2 H(s)=\frac{K_ps^2}{s^2+\alpha\omega_0s+\omega_0^2} H(s)=s2+αω0s+ω02Kps2
-
α \alpha α较大: 过渡将平缓下降/上升, 频率选择特性变差
-
α \alpha α很小: 幅频特性在 ω 0 \omega_0 ω0附近产生较大过冲, 不利于低通滤波
-
用LC/RC器件+有源器件可实现较低阻尼, 得到复数极点
二阶带通&带阻滤波器
-
二阶带通滤波器
-
H ( s ) = K p ( ω 0 / Q ) s s 2 + ( ω 0 / Q ) s + ω 0 2 H(s)=\frac{K_p(\omega_0/Q)s}{s^2+(\omega_0/Q)s+\omega_0^2} H(s)=s2+(ω0/Q)s+ω02Kp(ω0/Q)s
-
- ω = 0 / ω → ∞ \omega=0 ~/~ \omega\rightarrow\infty ω=0 / ω→∞: A ( ω ) = 0 A(\omega)=0 A(ω)=0
- ω = ω 0 \omega=\omega_0 ω=ω0: A ( ω ) = K p A(\omega)=K_p A(ω)=Kp 极大值
-
-
二阶带阻滤波器
- H ( s ) = K p ( s 2 + ω 0 2 ) s 2 + ( ω 0 / Q ) s + ω 0 2 H(s)=\frac{K_p(s^2+\omega_0^2)}{s^2+(\omega_0/Q)s+\omega_0^2} H(s)=s2+(ω0/Q)s+ω02Kp(s2+ω02)
-
转折频率 f c = ω 2 π f_c=\frac{\omega}{2\pi} fc=2πω 信号增益↓3dB
-
ω = ω c \omega=\omega_c ω=ωc: A ( ω ) = K p 2 A(\omega)=\frac{K_p}{\sqrt{2}} A(ω)=2Kp
-
(
ω
c
2
−
ω
0
2
)
2
=
(
ω
0
ω
c
/
Q
)
2
(\omega_c^2-\omega_0^2)^2=(\omega_0\omega_c/Q)^2
(ωc2−ω02)2=(ω0ωc/Q)2
- ω c 1 = ω 0 2 Q + ω 0 2 4 Q 2 + ω 0 2 , ω c 2 = − ω 0 2 Q + ω 0 2 4 Q 2 + ω 0 2 \omega_{c1}=\frac{\omega_0}{2Q}+\sqrt{\frac{\omega_0^2}{4Q^2}+\omega_0^2}, \omega_{c2}=-\frac{\omega_0}{2Q}+\sqrt{\frac{\omega_0^2}{4Q^2}+\omega_0^2} ωc1=2Qω0+4Q2ω02+ω02,ωc2=−2Qω0+4Q2ω02+ω02
- Δ ω = ω c 1 − ω c 2 = ω 0 / Q \Delta\omega=\omega_{c1}-\omega_{c2}=\omega_0/Q Δω=ωc1−ωc2=ω0/Q
- 品质因数: Q = ω 0 Δ ω Q=\frac{\omega_0}{\Delta\omega} Q=Δωω0 Q越大,相对带宽越小, 频率选择性能越强
- 相对带宽: 1 Q = Δ ω ω 0 \frac{1}{Q}=\frac{\Delta\omega}{\omega_0} Q1=ω0Δω
- Δ ω \Delta\omega Δω: 3dB绝对带宽
-
(
ω
c
2
−
ω
0
2
)
2
=
(
ω
0
ω
c
/
Q
)
2
(\omega_c^2-\omega_0^2)^2=(\omega_0\omega_c/Q)^2
(ωc2−ω02)2=(ω0ωc/Q)2
一二阶常通滤波器
- 幅频特性为常数, 对不同频率信号有不同移相作用(移相器)
- 修正非线性相位特性产生的相位失真, 可用于相位补偿, 防止系统自激振荡
一阶有源滤波电路
- 一阶有源RC滤波电路
-
- K p = 1 K_p=1 Kp=1
-
- 反相一阶有源RC滤波电路
-
- K p = R R 0 K p = − R 0 R K_p=\frac{R}{R_0} ~~ K_p=-\frac{R_0}{R} Kp=R0R Kp=−RR0
-
压控电压源型滤波电路
-
低通滤波电路
-
- H ( s ) = K p ω 0 2 s 2 + α ω 0 s + ω 0 2 H(s)=\frac{K_p\omega_0^2}{s^2+\alpha\omega_0s+\omega_0^2} H(s)=s2+αω0s+ω02Kpω02
-
-
高通滤波器
-
- H ( s ) = K p s 2 s 2 + α ω 0 s + ω 0 2 H(s)=\frac{K_ps^2}{s^2+\alpha\omega_0s+\omega_0^2} H(s)=s2+αω0s+ω02Kps2
-
-
带通滤波器
-
- H ( s ) = K p ( ω 0 / Q ) s s 2 + ( ω 0 / Q ) s + ω 0 2 H(s)=\frac{K_p(\omega_0/Q)s}{s^2+(\omega_0/Q)s+\omega_0^2} H(s)=s2+(ω0/Q)s+ω02Kp(ω0/Q)s
-
-
- 双T网络: R 3 = R 1 / / R 2 , C 3 = C 1 / / C 2 R_3=R_1//R_2, C_3=C_1//C_2 R3=R1//R2,C3=C1//C2
- 对称参数: C 1 = C 2 = C 3 / 2 = C , R 1 = R 2 = 2 R 3 = R C_1=C_2=C_3/2=C, R_1=R_2=2R_3=R C1=C2=C3/2=C,R1=R2=2R3=R
- 品质因数由压控增益 K f K_f Kf决定
- 压控增益 K f < 2 K_f<2 Kf<2, 否则自激振荡