一阶RC和二阶RC低通滤波器

本文详细介绍了RC电路的原理,重点讨论了一阶和二阶RC低通滤波器的设计与计算。通过离散化处理,得到一阶滤波的递推公式,并对二阶滤波器的复杂计算进行了简化,揭示了其与前两个时刻输出的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RC电路原理推导

因为最近有做一些RC滤波电路的东西,这部分内容都是在大学本科的时候学习的,很多东西也记得不是很清晰了,手头也没有资料翻阅,在网上看的资料都是五花八门各不一样,很多都出现错误,并且对于二阶RC电路的介绍很少,所以我做了一些整理。

一阶RC低通滤波电路

一阶RC低通滤波电路如下图所示
在这里插入图片描述对应系统的传递函数的表达式如下 U o U i = 1 R C S + 1 \frac{\mathrm{U}_{\mathrm{o}}}{\mathrm{U}_{\mathrm{i}}}=\frac{1}{R C S+1} UiUo=RCS+11
对其进行离散化处理 S = 1 − z − 1 T S=\frac{1-z^{-1}}{T} S=T1z1
可得 R C ⋅ 1 − z − 1 T R C 1 − z − 1 T + 1 = R C ( 1 − z − 1 ) R C ( 1 − z − 1 ) + T = Y n X n \frac{R C \cdot \frac{1-z^{-1}}{T}}{R C \frac{1-z^{-1}}{T}+1}=\frac{R C\left(1-z^{-1}\right)}{R C\left(1-z^{-1}\right)+T}=\frac{Y_{n}}{X_{n}} RCT1z1+1RCT1z1=RC(1z1)+TRC(1z1

### RC低通滤波器二阶MFB低通滤波器级联后的传递函数分析 当考虑将RC低通滤波器二阶MFB(Multiple Feedback)低通滤波器级联时,整体系统的传递函数可以通过各自独立部分的乘积来获得。 #### RC低通滤波器传递函数 对于简单的RC低通滤波器,其传递函数可以表示为: \[ H_1(s) = \frac{V_{out}(s)}{V_{in}(s)} = \frac{1}{1+sR_1C_1} \] 其中 \( R_1 \) \( C_1 \) 是构成该滤波器的电阻电容值[^1]。 ```python from sympy import symbols, simplify # 定义符号变量 s, R1, C1 = symbols('s R1 C1') # RC低通滤波器传递函数 H1 = 1 / (1 + s * R1 * C1) print(f"H1(s): {H1}") ``` #### 二阶MFB低通滤波器传递函数 而典型的二阶MFB低通滤波器具有如下形式的传递函数: \[ H_2(s) = \frac{\omega_n^2}{s^2+\left(\frac{\omega_n}{Q}\right)s+\omega_n^2} \] 这里 \( Q \) 表示品质因数,\( \omega_n \) 则代表自然频率。具体到实际应用中的参数计算需依据特定设计需求调整各个组件数值。 ```python wn, Q = symbols('wn Q') H2 = wn**2 / (s**2 + (wn/Q)*s + wn**2) print(f"H2(s): {H2}") ``` #### 级联系统总传递函数 由于两个子系统之间相互独立工作,在理想情况下可以直接相乘得到整个系统的传递函数表达式: \[ H_T(s)=H_1(s)\times H_2(s) \] 即: \[ H_T(s) =\frac{1}{(1+sR_1C_1)(s^2+(\frac{\omega_n}{Q})s+\omega_n^2)} \] 此公式描述了RC低通滤波器二阶MFB低通滤波器串联之后的整体行为特性。 为了实现更精确的设计,还需要根据具体的性能指标(如截止频率、衰减斜率等),通过适当选择各元件的具体参数来进行优化配置。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值