CEC2015:动态多目标测试函数之DIMP2、dMOP2、dMOP2_iso、dMOP2_dec

88 篇文章 39 订阅
20 篇文章 19 订阅

一、动态多目标优化问题简介

现实世界中,许多优化问题不仅具有多属性,而且与时间相关,即随着时间的变化,优化问题本身也发生改变,这类问题称为动态多目标优化问题(dynamic multi-objective optimization problems,DMOP)。DMOP是一类目标之间相互冲突,目标函数、约束函数和相关参数等可能随着时间的变化而改变的多目标优化问题。不失一般性,以最小化多目标问题为研究对象,一个具有n个决策变量,m个目标函数的DMOP可以描述为:
{ min ⁡ x ∈ Ω ( x , t ) = ( f 1 ( x , t ) , f 2 ( x , t ) , ⋯   , f m ( x , t ) ) T s ⋅ t ⋅ g i ( x , t ) ⩽ 0 ( i = 1 , 2 , ⋯   , p ) h j ( x , t ) = 0 ( j = 1 , 2 , ⋯   , q ) \left\{\begin{array}{l} \min _{x \in \Omega}(\boldsymbol{x}, t)=\left(f_{1}(\boldsymbol{x}, t), f_{2}(\boldsymbol{x}, t), \cdots, f_{m}(\boldsymbol{x}, t)\right)^{T} \\ s \cdot t \cdot g_{i}(\boldsymbol{x}, t) \leqslant 0(i=1,2, \cdots, p) \\ h_{j}(\boldsymbol{x}, t)=0(j=1,2, \cdots, q) \end{array}\right. minxΩ(x,t)=(f1(x,t),f2(x,t),,fm(x,t))Tstgi(x,t)0(i=1,2,,p)hj(x,t)=0(j=1,2,,q)
其中 , t 为时间变量 , x = ( x 1 , x 1 , ⋯   , x n ) ∈ Ω 为 n 维决策变量 , F = ( f 1 , f 2 , ⋯   , , f m ) 为 m 维目标向量 , g i ⩽ 0 ( i = 1 , 2 , ⋯   , p ) 为 p 个不等式约束 , h j = 0 ( j = 0 , 1 , ⋯   , q ) 为 q 个等式约束。 其中, t 为时间变量, \\x=\left(x_{1}, x_{1}, \cdots, x_{n}\right) \in \Omega 为 n 维决策变量, \\\boldsymbol{F}=\left(f_{1}, f_{2}, \cdots,\right. , \left.f_{m}\right) 为 m 维目标向量, \\ g_{i} \leqslant 0(i=1,2, \cdots, p) 为 p 个不等式约束,\\ h_{j}=0(j=0 , 1, \cdots, q) 为 q 个等式约束。 其中,t为时间变量,x=(x1,x1,,xn)Ωn维决策变量,F=(f1,f2,,,fm)m维目标向量,gi0(i=1,2,,p)p个不等式约束,hj=0(j=0,1,,q)q个等式约束。

二、CEC2015测试函数

cec2015共包含12个测试函数,分别是FDA4、FDA5、FDA5_iso、FDA5_dec、DIMP2、dMOP2、dMOP2_iso、dMOP2_dec、dMOP3、 HE2、HE7和HE9。其中前四个测试函数目标数为3,其余目标数为2。
在这里插入图片描述
CEC2015:动态多目标测试函数之FDA4、FDA5、FDA5_iso、FDA5_dec

2.5 DIMP2

CEC2015动态多目标测试函数之DIMP2,不同参数下PF随时间变化动图

在这里插入图片描述

2.6 dMOP2

CEC2015动态多目标测试函数之dMOP2,不同参数下PF随时间变化动图
在这里插入图片描述

2.7 dMOP2_iso

CEC2015动态多目标测试函数dMOP2_iso,不同参数下PF随时间变化动图
在这里插入图片描述

2.8 dMOP2_dec

CEC2015动态多目标测试函数dMOP2_dec,不同参数下PF随时间变化动图
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值