机器学习案例(七):产品需求预测

本文介绍了一种使用机器学习预测产品需求的方法,通过分析价格与需求的关系,利用Python进行数据预处理、建模和预测。数据集中包含产品编号、店铺编号、总价格、基准价格和售出单位等信息,通过决策树回归算法建立模型,以价格为影响因素预测产品销量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对一种产品的需求会随着其价格的变化而变化。如果你拿现实世界的例子,你会看到如果产品不是必需品,那么它的需求会随着价格的上涨而减少,而需求会随着价格的下降而增加。如果想知道我们如何通过机器学习来预测对产品的需求,那么这篇文章就是为您准备的。在本文中,我将引导完成使用 Python 进行机器学习的产品需求预测任务。

一、数据集

数据集下载:

https://raw.githubusercontent.com/amankharwal/Website-data/master/demand.csv

数据特征描述:

  1. 产品编号;
  2. 店铺编号;
  3. 产品销售的总价格;
  4. 产品销售的基准价格;
  5. 售出的单位(需求量);

二、产品需求预测(案例研究)

2.1 数据导入

import pandas as pd
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

川川菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值