【自动控制原理】频域分析法

〇、写在前面

  1. 往期文章传送门:
    拉氏变换
    控制系统的数学模型
    时域分析法
    根轨迹的绘制
    根轨迹法分析系统性能
  2. 本文定位:复习

一、频率特性

1.1 线性系统的频率特性

仍然考虑RC电路为例:
在这里插入图片描述
控制系统的数学模型所讲内容可知,系统的输入输出关系为: T d u O d t + u O = u i T\frac{du_O}{dt}+u_O=u_i TdtduO+uO=ui于是传递函数表示为: G ( s ) = 1 T s + 1 G(s)=\frac{1}{Ts+1} G(s)=Ts+11先前我们讨论了输入为阶跃信号、斜坡信号等输入时的响应。现在,如果我们将电路接入交流电,使得输入 u i = A s i n ( ω t ) u_i=Asin(\omega t) ui=Asin(ωt),并使 u O u_O uO 的初始值为 u O 0 u_{O_0} uO0,则 U O ( s ) = 1 T s + 1 [ U i ( s ) + T u O 0 ] = 1 T s + 1 [ A ω s 2 + ω 2 + T u O 0 ] U_O(s)=\frac{1}{Ts+1}[U_i(s)+Tu_{O_0}]=\frac{1}{Ts+1}[\frac{A\omega}{s^2+\omega^2}+Tu_{O_0}] UO(s)=Ts+11[Ui(s)+TuO0]=Ts+11[s2+ω2Aω+TuO0]反拉氏变换得: u o ( t ) = ( u O 0 + A ω T 1 + T 2 ω 2 ) e − t T + A 1 + T 2 ω 2 s i n ( ω t − a r c t a n ω T ) u_o(t)=(u_{O_0}+\frac{A\omega T}{1+T^2\omega^2})\text e^{-\frac{t}{T}}+\frac{A}{\sqrt{1+T^2\omega^2}}sin(\omega t-arctan\omega T) uo(t)=(uO0+1+T2ω2AωT)eTt+1+T2ω2 Asin(ωtarctanωT)所以: lim ⁡ t → ∞ u o = A 1 + T 2 ω 2 s i n ( ω t − a r c t a n ω T ) \lim_{t \to \infty}u_{o}=\frac{A}{\sqrt{1+T^2\omega^2}}sin(\omega t-arctan\omega T) tlimuo=1+T2ω2 Asin(ωtarctanωT)可以看出,稳态输出幅值为: A ( ω ) = A 1 + T 2 ω 2 A(\omega)=\frac{A}{\sqrt{1+T^2\omega^2}} A(ω)=1+T2ω2 A稳态输出相位为: ϕ ( ω ) = − a r c t a n ω T \phi(\omega)=-arctan\omega T ϕ(ω)=arctanωT其中,负号表示滞后。

从这两个式子可以看出,输出响应的幅值和相位是频率 ω \omega ω 的函数。
由此可以引出频率特性定义:
输出信号与输入信号的傅氏变换之比成为频率特性,其中,输出与输入同频谐波分量幅值与输入幅值之比成为幅频特性,输出与输入同频谐波分量与输入信号相位差 ϕ ( ω ) \phi(\omega) ϕ(ω)相频特性,并且规定,当 ϕ ( ω ) < 0 \phi(\omega)<0 ϕ(ω)<0 时,称之为输出滞后,否则称之为输出超前。用公式表述为: A ( ω ) = ∣ X c ( j ω ) X r ( j ω ) ∣ = R e 2 + I m 2 A(\omega)=\lvert\frac{X_c(j\omega)}{X_r(j\omega)}\rvert=\sqrt{Re^2+Im^2} A(ω)=Xr()Xc()=Re2+Im2 ϕ ( ω ) = ∠ X c ( j ω ) X r ( j ω ) = a r c t a n I m R e \phi(\omega) = \angle\frac{X_c(j\omega)}{X_r(j\omega)}=arctan\frac{Im}{Re} ϕ(ω)=Xr()Xc()=arctanReIm

1.2 不同算法之间的联系

微分方程—拉氏变换—>传递函数—反拉氏变换—>微分方程—傅氏变换—>频率特性
传递函数—令s=jw—>频率特性—辨识—>传递函数

二、奈氏图

2.1 绘制开环幅相曲线

例:已知: G ( s ) H ( s ) = 10 s ( s + 1 ) ( 10 s + 5 ) G(s)H(s)=\frac{10}{s(s+1)(10s+5)} G(s)H(s)=s(s+1)(10s+5)10绘制其奈氏图。
解:【这个绘制奈氏图,胡寿松课本上写的方法是将其分解为若干典型环节,然后判定每个环节的幅相情况,从而判断整体情况。这里我写了一种直接判定的方法,无需分解各个环节,过程长一些,但不需要记忆各个环节,而且每个式子表示的意义也很明显。】
首先写在前面,复习一个复变函数里的知识点,两个复数相乘得到结果的模等于两个复数模的成积,该结果的幅角等于两个幅角的和;两个复数相除的结果的模等于两个复数模相除,结果的幅角等于两个复数幅角的差。
化为尾一标准型,然后令 s = j ω s=j\omega s=,得: G ( j ω ) H ( j ω ) = 2 j ω ( j ω + 1 ) ( 2 j ω + 1 ) G(j\omega)H(j\omega)=\frac{2}{j\omega(j\omega+1)(2j\omega+1)} G()H()=(+1)(2+1)2
ω = 0 \omega=0 ω=0 时(这个0不是0+,而是真正的0), ∣ G ( 0 ) H ( 0 ) ∣ = ∞ |G(0)H(0)|=\infty G(0)H(0)= ∠ G ( 0 ) H ( 0 ) = 0 − 0 − 0 − 0 = 0 \angle G(0)H(0)=0-0-0-0=0 G(0)H(0)=0000=0关于这个相角为什么这样写,你看,分子是2吧,2在复平面上的点是(2,0),所以角度是0,分母上第一个因式是jw,当w=0的时候,对应在复平面上坐标是(0,0),也就是原点,所以角度是0,第二个因式(jw+1)当w=0的时候,对应在复平面上坐标是(1,0),所以角度是0,第三个因式(2jw+1)当w=0时,对应复平面上点是(1,0),所以角度是0。这三个都在分母上,所以是0-0-0-0=0。

ω = 0 + \omega=0^+ ω=0+ 时, ∣ G ( 0 + ) H ( 0 + ) ∣ = lim ⁡ ω → 0 + 2 ω 1 + ω 2 1 + 4 ω 2 = ∞ |G(0^+)H(0^+)|=\lim_{\omega\to0^+}{\frac{2}{\omega\sqrt{1+\omega^2}\sqrt{1+4\omega^2}}}=\infty G(0+)H(0+)=ω0+limω1+ω2 1+4ω2 2= ∠ G ( 0 + ) H ( 0 + ) = lim ⁡ ω → 0 + ( 0 − π 2 − a r c t a n ω − a r c t a n 2 ω ) = 0 − π 2 = − π 2 \angle G(0^+)H(0^+)=\lim_{\omega\to0^+}{(0-\frac{\pi}{2}-arctan\omega-arctan2\omega)}=0-\frac{\pi}{2}=-\frac{\pi}{2} G(0+)H(0+)=ω0+lim(02πarctanωarctan2ω)=02π=2π ω = ∞ \omega=\infty ω= 时, ∣ G ( ∞ ) H ( ∞ ) ∣ = lim ⁡ ω → ∞ 2 ω 1 + ω 2 1 + 4 ω 2 = 0 |G(\infty)H(\infty)|=\lim_{\omega\to\infty}{\frac{2}{\omega\sqrt{1+\omega^2}\sqrt{1+4\omega^2}}}=0 G()H()=ωlimω1+ω2 1+4ω2 2=0 ∠ G ( ∞ ) H ( ∞ ) = lim ⁡ ω → ∞ ( 0 − π 2 − a r c t a n ω − a r c t a n 2 ω ) = − 3 π 2 \angle G(\infty)H(\infty)=\lim_{\omega\to\infty}{(0-\frac{\pi}{2}-arctan\omega-arctan2\omega)}=-\frac{3\pi}{2} G()H()=ωlim(02πarctanωarctan2ω)=23π
对传递函数,令 s = j ω s=j\omega s= 得: G ( j ω ) H ( j ω ) = 2 j ω ( 1 − j ω ) ( 1 − 2 j ω ) − ω 2 ( 1 + ω 2 ) ( 1 + 4 ω 2 ) = 2 ( j ω + 3 ω 2 − 2 j ω 3 ) − ω 2 ( 1 + ω 2 ) ( 1 + 4 ω 2 ) = 2 ( 3 ω 2 + ω ( 1 − 2 ω 2 ) j ) − ω 2 ( 1 + ω 2 ) ( 1 + 4 ω 2 ) G(j\omega)H(j\omega)=\frac{2j\omega(1-j\omega)(1-2j\omega)}{-\omega^2(1+\omega^2)(1+4\omega^2)}=\frac{2(j\omega+3\omega^2-2j\omega^3)}{-\omega^2(1+\omega^2)(1+4\omega^2)}=\frac{2(3\omega^2+\omega(1-2\omega^2)j)}{-\omega^2(1+\omega^2)(1+4\omega^2)} G()H()=ω2(1+ω2)(1+4ω2)2(1)(12)=ω2(1+ω2)(1+4ω2)2(+3ω22jω3)=ω2(1+ω2)(1+4ω2)2(3ω2+ω(12ω2)j) I m [ G ( j ω ) ( j ω ) ] = 0 Im[G(j\omega)(j\omega)]=0 Im[G()()]=0 得: ω x = 2  rad/s \omega_x=\sqrt2\text{ rad/s} ωx=2  rad/s 因此,在 ω > 0 \omega>0 ω>0 范围内,穿过一次实轴。

可以看出, ω = 0 + \omega=0^+ ω=0+ 时, R e [ G ( j ω ) ( j ω ) ] < 0 Re[G(j\omega)(j\omega)]<0 Re[G()()]<0,因此奈氏图草图可以画为:
(注:这是草图,能表示出相角变化, ω x \omega_x ωx, 走向等重要信息即可,不要求与原图一模一样)
在这里插入图片描述
有些书上草图也这样画:
在这里插入图片描述
用matlab写入以下程序,可以用计算机得到精准曲线:

sys = zpk([],[0 -1 -0.5],1)
nyquist(sys)

在这里插入图片描述

2.2 奈氏图利用

如:奈氏判据(见第四节)

三、伯德图

3.1 开环对数频率特性曲线

伯德图是开环对数频率特性曲线,横坐标是频率的对数值,因此是十倍频等间距。实际的开环对数频率特性曲线是光滑弯曲的,我们画伯德图的时候是用直线作为渐近线去代替。

典型环节包括三部分:
(1) K s ν \frac{K}{s^\nu} sνK − K s ν -\frac{K}{s^\nu} sνK ( K > 0 ) (K>0) (K>0)
(2)一阶环节:包括惯性环节、一阶微分环节,其交接频率 ω = 1 T \omega=\frac{1}{T} ω=T1
(3)二阶环节:包括振荡环节、二阶微分环节,其交接频率 ω = ω n \omega=\omega_n ω=ωn

3.2 绘制

  1. 对传递函数进行了典型环节分解,并化为尾一标准型。
  2. 确定各个环节交接频率和系统型别(积分环节个数,也即在原点处的极点的个数)。
  3. 低频段:
    (1)低频段直线斜率: − 20 ν  dB/dec -20\nu \text{ dB/dec} 20ν dB/dec
    (2)低频段(或延长线)过定点: ( 1 , 20 lg ⁡ K ) (1,20\lg{K}) (1,20lgK)
  4. 的越过低频段后,每到一次交接频率,直线斜率变化一次,变化规则如下:
典型环节交接频率斜率变化
1 1 ± T s \frac{1}{1\pm Ts} 1±Ts1 1 T \frac{1}{T} T1-20dB/dec
1 ± T s 1\pm Ts 1±Ts 1 T \frac{1}{T} T120dB/dec
s 2 ω n 2 ± 2 ζ s ω n + 1 \frac{s^2}{\omega_n^2\pm2\zeta\frac{s}{\omega_n}+1} ωn2±2ζωns+1s2 ω n \omega_n ωn-40dB/dec
ω n 2 ± 2 ζ s ω n + 1 \omega_n^2\pm2\zeta\frac{s}{\omega_n}+1 ωn2±2ζωns+1 ω n \omega_n ωn40dB/dec
  1. 相频特性一般通过描点,然后用平滑的曲线连接的方法来描绘。

3.3 举例

已知单位负反馈系统开环传递函数: G ( s ) = 100 ( 0.1 s + 1 ) s ( 0.2 s + 1 ) ( 0.01 s + 1 ) G(s)=\frac{100(0.1s+1)}{s(0.2s+1)(0.01s+1)} G(s)=s(0.2s+1)(0.01s+1)100(0.1s+1)绘制伯德图。

解:可以看出,系统已经进行了典型环节分解,并化为了尾一标准型。

这个系统是一型系统,所以低频段斜率是 -20dB/dec。
系统增益 K = 100 K=100 K=100,所以低频段(或延长线)过 ( 1 , 20 lg ⁡ 100 ) = ( 1 , 40 ) (1,20\lg100)=(1,40) (1,20lg100)=(1,40)

交接频率 ω 1 = 1 0.2 = 5  rad/s, ω 2 = 1 0.1 = 10  rad/s, ω 3 = 1 0.01 = 100  rad/s \omega_1=\frac{1}{0.2}=5\text{ rad/s},\omega_2=\frac{1}{0.1}=10\text{ rad/s},\omega_3=\frac{1}{0.01}=100\text{ rad/s} ω1=0.21=5 rad/sω2=0.11=10 rad/sω3=0.011=100 rad/s。所以在 ω 1 \omega_1 ω1 处,对应 1 0.2 s + 1 \frac{1}{0.2s+1} 0.2s+11 斜率降低 20dB/dec;在 ω 2 \omega_2 ω2 处,对应 0.1 s + 1 0.1s+1 0.1s+1,斜率升高 20dB/dec;在 ω 3 \omega_3 ω3 处,对应 1 0.01 s + 1 \frac{1}{0.01s+1} 0.01s+11 ,斜率降低 20dB/dec

所以画出对数频率特性曲线如下:
在这里插入图片描述

我们用matlab试一下:

sys = zpk([-10],[0,-5,-100],100)
bode(sys)

得到结果:
在这里插入图片描述

3.4 谐振现象

谐振是当频率满足一定条件时,系统表现出来的一种特殊现象。比如在RLC电路中,并联谐振时,感性和容性相抵,输出信号幅值达到最大值。

对于二阶系统,谐振满足:
峰值: M r = 1 2 ζ 1 − ζ 2 ( ζ ≤ 0.707 ) M_r=\frac{1}{2\zeta\sqrt{1-\zeta^2}}(\zeta\leq0.707) Mr=2ζ1ζ2 1(ζ0.707)
谐振频率: ω r = ω n 1 − 2 ζ 2 \omega_r=\omega_n\sqrt{1-2\zeta^2} ωr=ωn12ζ2
带宽频率: ω b = ω n 1 − 2 ζ 2 + 2 − 4 ζ 2 + 4 ζ 4 \omega_b=\omega_n\sqrt{1-2\zeta^2+\sqrt{2-4\zeta^2+4\zeta^4}} ωb=ωn12ζ2+24ζ2+4ζ4
截止频率: ω c = ω n 1 + 4 ζ 4 − 2 ζ 2 \omega_c=\omega_n\sqrt{\sqrt{1+4\zeta^4}-2\zeta^2} ωc=ωn1+4ζ4 2ζ2
相角裕度: γ = arctan ⁡ 2 ζ 1 + 4 ζ 4 − 2 ζ 2 \gamma=\arctan\frac{2\zeta}{\sqrt{\sqrt{1+4\zeta^4}-2\zeta^2}} γ=arctan1+4ζ4 2ζ2 2ζ
超调量: σ % = e − π ζ 1 − ζ 2 × 100 % \sigma\%=\text{e}^{-\pi\zeta\sqrt{1-\zeta^2}}\times100\% σ%=eπζ1ζ2 ×100%
调节时间: t s = 3.5 ζ ω n ( Δ = 0.05 ) t_s=\frac{3.5}{\zeta\omega_n}(\Delta=0.05) ts=ζωn3.5(Δ=0.05)
伯德图上,如果系统在转折处出现类似这样的转折点:
在这里插入图片描述
说明在二阶环节处发生谐振,该点满足: ± 20 lg ⁡ 2 ζ 1 − ζ 2 = 真值 − 渐近线值 \pm20\lg{2\zeta\sqrt{1-\zeta^2}}=真值-渐近线值 ±20lg2ζ1ζ2 =真值渐近线值

如果出现:
在这里插入图片描述
说明在一阶环节处滤波,满足:
± 20 lg ⁡ ζ = 真值 − 渐近线值 \pm20\lg\zeta=真值-渐近线值 ±20lgζ=真值渐近线值

3.5 伯德图辨识

本质上就是画伯德图的思路反过来,从伯德图中读出转折频率,系统型别,开环增益,典型环节等信息。

  1. 型别:通过低频段斜率读出,低频段斜率为 − 20 ν -20\nu 20ν
  2. 开环增益:低频段通过(或其延长线通过) ( 1 , 20 lg ⁡ K ) (1,20\lg K) (1,20lgK)
  3. 典型环节:通过斜率增减20还是40来判断是几阶环节
  4. 转折频率:通过读出转折点处的频率值,进而算出一阶环节的时间常数 T T T 或者二阶环节的固有频率 ω n \omega_n ωn
  5. 转折频率有时候要结合几何关系,主要是三角形的关系,比如斜边斜率、相似、勾股定理等,注意频率要取对数。

如有以下系统:
在这里插入图片描述
可以看出,低频段斜率为0,因此是0型系统,系统有一个一阶微分环节,四个一阶惯性环节,在一阶微分环节处,转折频率是0.1rad/s,因此时间常数是10s。低频段延长线过 ( 1 , 30 ) (1,30) (1,30),所以 20 lg ⁡ K = 30 20\lg K=30 20lgK=30解得: K = 31.6 K=31.6 K=31.6
系统传递函数可以设为: W ( s ) = 31.6 ( 10 s + 1 ) ( s ω 1 + 1 ) ( s ω 2 + 1 ) ( s ω 3 + 1 ) ( s ω 4 + 1 ) W(s)=\frac{31.6(10s+1)}{(\frac{s}{\omega_1}+1)(\frac{s}{\omega_2}+1)(\frac{s}{\omega_3}+1)(\frac{s}{\omega_4}+1)} W(s)=(ω1s+1)(ω2s+1)(ω3s+1)(ω4s+1)31.6(10s+1)
然后:
{ 20 = 40 − 30 lg ⁡ ω 1 − lg ⁡ 0.1 − 20 = 20 − 40 lg ⁡ ω 3 − lg ⁡ ω 2 − 40 = 5 − 20 lg ⁡ ω 4 − lg ⁡ ω 3 \left\{ \begin{array}{c} 20=\frac{40-30}{\lg\omega_1-\lg0.1} \\ \\ -20=\frac{20-40}{\lg\omega_3-\lg\omega_2} \\ \\ -40=\frac{5-20}{\lg\omega_4-\lg\omega_3} \\ \end{array} \right. 20=lgω1lg0.1403020=lgω3lgω2204040=lgω4lgω3520
解得:
{ ω 1 = 0.316  rad/s ω 2 = 3.48  rad/s ω 3 = 34.8  rad/s ω 4 = 82.6  rad/s \left\{ \begin{array}{c} \omega_1=0.316\space \text{rad/s} \\ \\ \omega_2=3.48\space \text{rad/s} \\ \\ \omega_3=34.8\space \text{rad/s} \\ \\ \omega_4=82.6\space \text{rad/s} \\ \end{array} \right. ω1=0.316 rad/sω2=3.48 rad/sω3=34.8 rad/sω4=82.6 rad/s
∴ W ( s ) = 31.6 ( 10 s + 1 ) ( s 0.316 + 1 ) ( s 3.48 + 1 ) ( s 34.8 + 1 ) ( s 82.6 + 1 ) \therefore W(s)=\frac{31.6(10s+1)}{(\frac{s}{0.316}+1)(\frac{s}{3.48}+1)(\frac{s}{34.8}+1)(\frac{s}{82.6}+1)} W(s)=(0.316s+1)(3.48s+1)(34.8s+1)(82.6s+1)31.6(10s+1)

四、奈氏判据

4.1 奈氏判据

  1. 判据: Z = P − R = P − 2 N = P − 2 ( N + − N − ) Z=P-R=P-2N=P-2(N_+-N_-) Z=PR=P2N=P2(N+N)
  2. 稳定条件: Z = 0 ⇔ P = 2 ( N + − N − ) Z=0\Leftrightarrow P=2(N_+-N_-) Z=0P=2(N+N)
  3. P P P:开环传递函数具有正实部的极点数
  4. R R R:奈奎斯特图中,半闭合曲线 Γ G H \Gamma_{GH} ΓGH(2.1中实线) 包围原点的圈数。
  5. N N N:奈氏图中半闭合曲线 Γ G H \Gamma_{GH} ΓGH 穿越 ( − 1 , j 0 ) (-1,j0) (1,j0) 点左侧实轴的次数。
  6. N + N_+ N+ ( − 1 , j 0 ) (-1,j0) (1,j0) 点左侧,正穿越次数,即半闭合曲线从上往下穿过实轴的次数。
  7. N − N_- N ( − 1 , j 0 ) (-1,j0) (1,j0) 点左侧,负穿越次数,即半闭合曲线从下往上穿过实轴的次数。

4.2 正穿越和负穿越

在这里插入图片描述
上图展示的几个情况中:
(1)图1:交点在 ( − 1 , j 0 ) (-1,j0) (1,j0) 点左侧,顺时针运行,所以负穿越1次, N − = 1 , N + = 0 N_-=1,N_+=0 N=1,N+=0
(2)图2:交点在 ( − 1 , j 0 ) (-1,j0) (1,j0) 点右侧,从下到上顺时针运行,所以没有在 ( − 1 , j 0 ) (-1,j0) (1,j0) 左侧的交点,因此正负穿越次数都记 0
(3)图3:三个交点,两个在 ( − 1 , j 0 ) (-1,j0) (1,j0) 左侧,一个在右侧,从左向右运行,所以正负穿越各一次, N − = N + = 1 N_-=N_+=1 N=N+=1
(4)图4:两个交点,都在 ( − 1 , j 0 ) (-1,j0) (1,j0) 左侧,顺时针运行,但一个交点停止于实轴,所以负穿越次数为1,正穿越次数为0.5,即 N − = 1 , N + = 0.5 N_-=1,N_+=0.5 N=1,N+=0.5

五、稳定裕度

5.1 相角裕度

5.1.1 定义

ω c \omega_c ωc 为系统的截止频率,则 A ( ω c ) = ∣ G ( j ω c ) H ( j ω c ) ∣ = 1 A(\omega_c)=|G(j\omega_c)H(j\omega_c)|=1 A(ωc)=G(jωc)H(jωc)=1,定义相角裕度: γ = π + ∠ G ( j ω c ) H ( j ω c ) \gamma=\pi+\angle G(j\omega_c)H(j\omega_c) γ=π+G(jωc)H(jωc)

5.1.2 相角裕度的频率特性意义

相角裕度的含义是:对于闭环稳定系统,如果开环相频特性再滞后 γ \gamma γ,则系统将处于临界稳定。

5.1.3 计算相角裕度

  1. ∣ G ( j ω c ) H ( ω c ) ∣ = 1 |G(j\omega_c)H(\omega_c)|=1 G(jωc)H(ωc)=1 求截止频率 ω c \omega_c ωc
  2. γ = π + ∠ G ( j ω c ) H ( j ω c ) \gamma=\pi+\angle G(j\omega_c)H(j\omega_c) γ=π+G(jωc)H(jωc)

5.2 幅值裕度

5.2.1 定义

ω x \omega_x ωx 为系统穿越频率,则幅值裕度定义为: h = 1 / ∣ G ( j ω x ) H ( j ω x ) ∣ h=1/|G(j\omega_x)H(j\omega_x)| h=1/∣G(jωx)H(jωx)
对数坐标下,也定义为: h ( dB ) = − 20 lg ⁡ ∣ G ( j ω x ) H ( j ω x ) ∣ h(\text {dB})=-20\lg|G(j\omega_x)H(j\omega_x)| h(dB)=20lgG(jωx)H(jωx)

5.2.2 幅值裕度的频率特性意义

幅值裕度的含义是:对于闭环稳定系统,如果开环幅频特性再增大 h h h 倍,则系统将处于临界稳定。

用一张图说明幅值裕度和相角裕度的意义。
在这里插入图片描述

5.2.3 计算幅值裕度

  1. ∠ G ( j ω c ) H ( ω c ) = ( 2 k + 1 ) π \angle G(j\omega_c)H(\omega_c)=(2k+1)\pi G(jωc)H(ωc)=(2k+1)π 求穿越频率 ω x \omega_x ωx
  2. h = 1 / ∣ G ( j ω x ) H ( j ω x ) ∣ h=1/|G(j\omega_x)H(j\omega_x)| h=1/∣G(jωx)H(jωx)
  • 6
    点赞
  • 52
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值