---
### 1. Sigma-Delta 调制器的数学模型
#### (1)积分器
积分器的输出 u(n) 是输入信号 x(n) 与反馈信号 y(n) 的差值累积:
u(n) = u(n-1) + x(n) - y(n-1)
其中:
- u(n) 是积分器在时刻 n 的输出。
- x(n) 是输入信号。
- y(n-1) 是前一时刻的输出信号。
#### (2)量化器
量化器将积分器的输出 u(n) 量化为 1 比特的二进制信号 y(n):
y(n) = Q(u(n))
其中 Q(.) 是量化函数:
Q(u(n)) =
{
1, if u(n) > 0
-1, otherwise
}
#### (3)反馈环路
输出信号 y(n) 通过负反馈环路返回到积分器,用于调整积分器的输出。
---
### 2. 噪声传递函数的推导
为了分析噪声整形特性,我们需要将量化噪声引入模型,并通过 Z 变换分析噪声传递函数。
#### (1)量化噪声模型
量化器的输出 y(n) 可以表示为:
y(n) = u(n) + e(n)
其中:
- u(n) 是积分器的输出。
- e(n) 是量化噪声。
#### (2)积分器的 Z 变换
对积分器的差分方程进行 Z 变换:
u(n) = u(n-1) + x(n) - y(n-1)
Z 变换后得到: