SU-03T语音模块使用简介

本文档详细介绍了SU-03T语音模块的规格特性,供电要求以及UART0和UART1的使用区别。提供了下载工具UniOneUpdateTool.exe的位置和烧录步骤,强调了CH340的接线方法和注意事项,确保模块与CH340的共地连接。烧录过程包括选择正确的镜像文件,通过串口进行通信,并在烧录完成后重新上电使模块正常工作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SU-03T语音模块

详细的介绍还得看厂家给的资料,里面有模块规格书,下载方法,平台配置语音SDK文档

1.先看SU-03T模组规格书,大概看下模块特性,了解模块的供电

供电电压 3.6V ~ 5.5V,一般 5V 供电,供电电流 >200mA

在这里插入图片描述

注意:UART0 串口 B0,B1 引脚是调试器的烧录口,串口烧录使用 UART1 (B6,B7 脚),具体烧录方式查看烧录文档

引脚说明:

序号Pin脚名称功能说明
1VCC5V供电
2GND数字地
33V3芯片内部 LDO 输出 3.3V,外部负载不能超过 150mA
4B8打印信息引脚,不用可悬空
5B7ADC13/UART1_TXD/I2C_SCL
6B6ADC12/UART1_RXD/I2C_SDA
7B2UART1_TXD/I2C_SCL/TIM3_PWM
8MIC-驻极体麦负极
9MIC+驻极体麦正极
10B3UART1_RXD/I2C_SDA/TIM4_PWM
11A27ADC6/SPIS_MOSI/SPIM_MOSI/I2S0_DO/DMIC1_CLK/TIM3_PWM
12A26ADC5/SPIS_CLK/SPIM_CLK/I2S0_BCLK/I2S1_BCLK/DMIC0_CLK
13A25ADC4/SPIS_MISO/SPIM_MISO/I2S0_LRCLK/I2S1_LRCLK/DMIC_DAT
14B0UART0_TXD/I2C_SCL/TIM3_PWM
15B1UART0_RXD/I2C_SDA/TIM4_PWM
16GND数字地
17SPK-喇叭负极
18SPK+喇叭正极

2.下载方法

(1).在官方平台配置好语音SDK后,将SDK下载到本地,存放目录不能有中文

在目录F:\SU-03Tyuyinbao\uni_hb_m_solution-6758-20220423\uni_hb_m_solution\image_demo\Hummingbird-M-Update-Tool

中有个下载工具,叫UniOneUpdateTool.exe,是官方配的下载工具,每次下载SDK包都会有这个工具

(2).打开工具,镜像文件选择与工具同一目录下的bin文件,要选release版本的,名称:uni_app_release_update.bin

在这里插入图片描述

(3).接线方式

B7 引脚 接 串口工具 RXD

B6 引脚 接 串口工具 TXD

GND 接 串口工具 GND

CH340不支持接负载的,需要外部给模块接电源,共地问题要解决好,即CH340的GND要接到外部电源的GND,保证CH340的地线与模块供电的地线是相连的,可以用面包板来接线

(4).CH340插上电脑,看到工具显示COM口后,点击烧录,再给模块上电(在此之前模块不要上电),上电后就会显示下载进度,等待即可

在这里插入图片描述

(5).完成烧录,模块重新上电即可使用,更详细的说明可看USB_Update_Tool_User_Guide串口测试教程

### SU-03T 语音识别算法实现原理 #### 设计概述 SU-03T 是一种专为智能家居设计的离线语音识别控制系统,能够处理并解析用户的语音命令来操作各种家用电器。此系统的独特之处在于其能够在无网络连接的情况下工作,这得益于内置的强大语音识别模块。 #### 系统架构 整个系统由几个主要部分组成:麦克风阵列用于捕捉声音信号;预处理器负责对原始音频数据进行初步过滤和增强;核心识别引擎则执行实际的语言理解任务;最后是应用层,它接收来自识别引擎的结果并将这些信息转换成具体的动作指令发送给目标设备[^1]。 #### 关键组件分析 为了更好地理解如何实现这样的功能,在这里详细介绍一些重要的组成部分: ##### 预处理阶段 当接收到的声音被输入到系统之后,会先经过一系列预处理步骤。这些过程可能包括但不限于降噪、回声消除以及自动增益控制等措施,目的是提高后续特征提取的质量。对于某些特定的应用场景来说,还可能会涉及到端点检测(VAD),即判断有效语音片段的位置以便更精准地截取有用的信息[^2]。 ##### 特征抽取方法 一旦完成了必要的前处理工作,则进入到最关键的一步——特征向量构建环节。通常情况下,MFCC(Mel频率倒谱系数)是最常用的一种表示形式因为它能很好地模拟人类听觉特性并且计算复杂度相对较低。除此之外还有其他几种替代方案比如PLP(Perceptual Linear Prediction),但无论采取哪种方式最终都会得到一组反映音素特性的数值序列作为下一步分类的基础材料[^3]。 ##### 模型训练与优化 有了上述准备好的样本集之后就可以着手建立模型了。一般而言GMM-HMM(Gaussian Mixture Model - Hidden Markov Model)框架下的连续密度隐马尔可夫模型由于具备良好的泛化能力和较高的准确性而成为首选对象之一。当然近年来随着深度学习技术的发展DNN/BLSTM-RNN也被广泛应用于此类场合当中因为它们往往可以获得更好的性能指标特别是在大规模语料库的支持下更是如此[^4]。 ```c++ #ifndef __FREQ_H #define __FREQ_H #include "sys.h" // 初始化LD3320芯片内部振荡器设置函数定义 void ld3320_freq_init(void); #endif //__FREQ_H ``` 这段代码展示了初始化硬件资源的部分逻辑,特别是针对LD3320这款专用集成电路的操作,它是完成高质量音频采集不可或缺的一环。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值