基于投资组合问题的凸二次规划模型及求解——Gurobi求解器+高阶牛顿法(python)

本文探讨了如何将凸优化理论应用于投资组合管理,通过构建均值-方差分析的等式约束凸二次规划模型,对比Gurobi求解器与高阶牛顿法求解过程,并展示了代码实现。结果被整理成Excel表格,以实际收益水平最小化风险为目标进行分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本学期上了最优化课程,学习到了一些凸优化的知识,想要尝试将这些优化理论应用到实际中。

这里基于均值-方差分析方法,针对以确定收益水平下的最小化风险为目标的投资组合问题建立了具有等式约束的凸二次规划模型,并分别利用GUROBI求解器和一种高阶牛顿算法对其进行求解。

模型描述如下(公式太多的地方就直接贴图片了):

分别利用Gurobi求解器和高阶牛顿法求解:

Gurobi:Gurobi是美国Gurobi Optimization公司开发的大规模优化求解器,目前已经成为综合能力全球领先的数学规划求解器,作为一个全局优化器,Gurobi支持的模型类型包括:连续和混合整数线性问题、凸目标或约束连续和混合整数二次问题、含有指对数、三角函数、高阶多项式目标和约束以及任何形式的分段约束的非线性问题等。另外,Gurobi提供了方便轻巧的API接口,支持C++、Java、Python等多种语言,同时支持包括Windows、Linux以及OS在内的多种平台。

基于绝对值光华逼近的高阶牛顿法(公式真的多我是真的懒,依旧贴图片):

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值