迁移学习xlm-roberta-base模型应用于分类任务

本文介绍了如何不采用官方推荐,而是通过普通方式下载和加载预训练的XLM-RoBERTa模型,并详细讲解了如何自定义配置和创建一个基于该模型的分类模型。作者展示了如何设置`Config`类和`Model`类,以及训练函数的基本结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下载模型在这里插入图片描述

加载模型

这里不使用官网推荐的方式

from transformers import AutoTokenizer, AutoModelForMaskedLM

tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")

model = AutoModelForMaskedLM.from_pretrained("xlm-roberta-base")

使用普通的加载方式
https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaTokenizer

from transformers import XLMRobertaTokenizer, XLMRobertaModel, BertConfig

设置Config类

class Config(object):
    def __init__(self, dataset):
    # 还有很多自己设定的config,我这里没写,每个人都不一样
    self.num_classes = n # 设置n分类
    self.hidden_size = 768
    self.model_path = "/***/xlm-roberta-base"
    self.tokenizer = XLMRobertaTokenizer.from_pretrained("xlm-roberta-base")
    self.bert_config = BertConfig.from_pretrained(self.model_path + '/config.json')
        

设置分类模型

class Model(nn.Module):
    def __init__(self, config):
        super(Model, self).__init__()
        self.bert = XLMRobertaModel.from_pretrained(config.model_path, config=config.bert_config)
        self.fc = nn.Linear(config.hidden_size, config.num_classes)


    def forward(self, x):
        context = x  # 输入的句子
        _, pooled = self.bert(context, attention_mask=mask,return_dict=False)
        # 如果电脑又GPU,要加上return_dict=False,否则不用加
        out = self.fc(pooled)
        return out

剩下的训练函数很简单,自己写吧

### 关于CLUE Benchmark的数据集及其应用 CLUE(Chinese GLUE)是一个专门针对中文自然语言处理任务设计的基准数据集集合[^4]。它旨在评估不同模型在中国特定场景下的表现能力,涵盖了多项核心任务,例如文本分类、阅读理解以及语义匹配等。 #### 数据集组成 该基准由多个子任务构成,具体如下: - **单句分类**:如TNEWS用于新闻标题的主题分类;OCNLI提供自然逻辑推理样本。 - **句子对比较**:AFQMC专注于判断两个问句是否具有相同含义。 - **序列标注**:CMRC作为中文版SQuAD,测试机器对于复杂篇章的理解力与抽取关键信息的能力。 这些多样化的评测维度共同构成了全面衡量模型综合性能的基础框架[^4]。 #### 应用价值 利用像XGLUE这样的多语言资源或者基于大规模预训练模型XLM-R进行迁移学习时,可以通过在CLUE上进一步精调来优化其对中国本土化需求的支持效果[^3]。这不仅有助于提高跨文化适应性,还能增强特定应用场景中的实际效能。 ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("clue/roberta_chinese_base") model = AutoModelForSequenceClassification.from_pretrained("clue/roberta_chinese_base") text = "这是一个示例输入" tokens = tokenizer(text, return_tensors="pt") outputs = model(**tokens) print(outputs.logits) ``` 上述代码片段展示了如何加载并使用经过CLUE适配后的RoBERTa模型来进行简单的推断操作。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值