基于站点、模式、遥感多源降水数据融合

降水在水循环中发挥着重要作用,塑造了生态景观和生态系统。目前,有四种主要方式获取降水数据:1)雨量计观测,2)地基雷达遥感,3)卫星遥感,4)模式模拟。基于雨量计观测的降水,通常被认为是最准确和可靠的。但由于复杂的地形和恶劣的环境,在中国西部人烟罕至地区没有气象站。基于站点数据网格化降水产品的准确性在很大程度上取决于站点空间密度和环境条件,而这些条件在不同地区有很大差异。因此,有必要将卫星遥感和模式数据结合起来,进一步提供高质量、高分辨率的降水数据。

目前,卫星遥感已被广泛用于水文气象的应用。这些年已有大量研究对遥感降水产品(如TMPA 3B42、CMORPH、PERSIANN-CDR)进行了评估,发现这些数据有着各种各样问题,尤其在冬季。而模式中的降水表现优于卫星数据,可以进一步补充和改善这些地区卫星数据的不足。

随着越来越多的降水数据集的产生,数据合并和校正的方法对利用各种数据源变得至关重要。美国多源加权集合降水(MSWEP)使用加权集合方法来合并全球高质量的降水数据,取得了好的效果。

近年来,机器学习方法重新兴起,将机器学习算法和融合的思路结合,能够进一步提高降水产品的质量

本文将以青藏高原为案例数据,融合多源降水数据

Python应用

Python基础

数据结构

循环与逻辑判断

切片

Numpy和Scipy使用

切片操作

相关系数

Xarray的使用

netCDF文件的读写

统计计算

掩膜操作

可视化

cdo的使用

时间域计算

空间域计算

文件操作

降水产品的评估

主要降水产品介绍

GsMAP

GPM IMERG

CMORPH

PERSIANN

HAR

ERA5

指标计算

计算连续指标(R2、RMSE)和离散指标(POD、FAR)

不同时间窗产品评估

年尺度、季节尺度、月尺度

短期序列数据的订正

站点数据质量控制(阈值法)

构建订正的样本序列

站点数据质量控制(阈值法)

构建订正的样本序列

空间索引匹配临近地面站点(KDtree)

构造订正序列(Gamma分布拟合、累计概率CDF)

逐格点订正遥感降水

计算遥感降水数据(GPM IMERG、CMORPH和GsMAP)的气候态

基于cdo和xarray计算月累计降水和多年平均累计降水

可视化年际变化

计算站点尺度上的不同降水产品权重

计算站点上对应环境因子(高程、坡度和坡向)

基于高程计算坡度

基于高程计算坡向

对高程、坡度和坡向插值到站点

计算站点尺度上的气象数据(ERA5数据的气温、风速、湿度)

气候态长时间序列数据融合-数据权重空间化

特征工程:利用站点尺度数据分析环境因子和气象数据与遥感降水的关系

模型筛选:筛选合适的

裁剪覆盖研究区的环境因子和气象数据

建模:使用机器学习算法构建权重外推模型

拆分样本

交叉验证

在研究区外推权重

气候态长时间序列数据融合-数据融合

数据融合

降水数据的融合

数据的评估

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值