Hmsc包开展群落数据联合物种分布模型分析通用流程(Pipelines)

HMSC(Hierarchical Species Distribution Models)是一种用于预测物种分布的统计模型。它在群落生态学中的应用广泛,可以帮助科学家研究物种在不同环境条件下的分布规律,以及预测物种在未来环境变化下的潜在分布范围。

举例来说,假设我们想研究某个湿地群落中两个物种的分布。我们收集了大量的样本数据,包括物种的出现与否、环境因素(如土壤水分、光照等)以及地理位置等信息。使用HMSC模型,我们可以在建立模型时考虑这些因素之间的层级关系。

首先,我们可以使用HMSC模型估计各个环境因素对物种分布的影响。通过计算各个环境因素的影响程度,我们可以了解哪些因素对物种的分布起到了重要作用。例如,在湿地群落中,土壤水分可能是影响某个物种生存的最重要因素。

其次,HMSC模型可以帮助预测物种在不同环境条件下的潜在分布范围。我们可以输入不同的环境因素数值,然后使用模型预测物种在这种环境条件下的分布概率。这样,我们可以了解物种在不同环境条件下的适应性,以及可能的分布范围。

此外,HMSC模型还可以帮助研究物种的共存模式。通过比较多个物种的分布模型,我们可以了解它们之间的相互作用与竞争关系。例如,我们可以研究两个湿地群落中的植物物种,通过比较它们的分布模型,我们可以推测它们之间的竞争关系。

HMSC联合物种分布模型在群落生态学中的贝叶斯统计分析应用

本次内容将以Hmsc包为对象,从群落生态学研究进展入手,逐步介绍Hmsc包对于群落生态学假说的解读、Hmsc包开展单物种和多物种分析的技术细节及Hmsc包的实际应用(具体案例)。将通过模型定义、拟合、诊断、评估、预测及结果展示的详细步骤和操作由浅入深讲解使大家掌握此模型方法,实现群落数据分析、物种分布预测、假说验证等工作以解决实际研究和工作中遇到的相关科学问题

专题一:专题1:R/Rstudio简介及入门【提供资料】

1)R及Rstudio介绍:背景、软件及程序包安装、基本设置等

2)R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等

3)R语言数据文件读取、整理(清洗)、结果存储等(含tidverse)

4)R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储

专题二:群落生态学及数据统计分析概述

1)群落生态学发展和研究趋势简介

2)群落形成机制及物种装配规则(Species Assemble Rules)

3)群落生态数据类型、特点及准备

4)群落生态数据与群落生态学主要科学问题关联

专题三:联合物种分布模型Hmsc及群落数据贝叶斯统计

1)联合物种分布模型Hmsc贝叶斯统计简介

2)联合物种分布模型Hmsc参数估计MCMC

3)联合物种分布模型Hmsc参数及对应群落生态假说

专题四:单物种(物种水平)/单变量Hmsc贝叶斯统计

1)Hmsc程序包基本语法、参数选择、固定效应和随机效应设置、模型诊断等

2)Hmsc单变量贝叶斯估计VS 单变量brms包贝叶斯估计异同

3)Hmsc物种属性数据单变量贝叶斯估计案例

4)Hmsc物种有无(0,1)数据单变量贝叶斯估计案例

5)Hmsc计数数据(多度)单变量贝叶斯估计案例(泊松分布、过度离散、零膨胀等)

6)Hmsc混合效应模型:固定效应+混合效应+空间自相关

专题五:多物种(群落水平)Hmsc贝叶斯统计模型

1)Hmsc多物种(群落水平)贝叶斯统计模型构建介绍

2)Hmsc低维多物种联合分布模型构建

(1)模型构建、物种分布设置

(2)解释变量引入(环境筛)

(3)物种关联关系确定(生物筛)

(4)模型诊断及性能评估

3)Hmsc高维多物种联合分布模型构建

(1)模型构建、物种分布设置

(2)物种性状、系统发育信息及环境变量引入

(3)模型诊断及性能评估

(4)模型调整(先验分布、解释变量等)、拟合和重评估

(5)结果展示,包括参数热图、种间关联、变差分解(Variation Partitioning)及排序(潜变量)等

专题六:Hmsc包群落生态数据分析高阶应用经典案例

1)Hmsc包开展群落数据联合物种分布模型分析通用流程(Pipelines)

2)Hmsc分析物种属性与环境关系案例

3)Hmsc分析响应变量为不同分布类型案例

4)Hmsc空间数据分析案例

5)Hmsc时间数据分析案例

6)Hmsc模型中环境变量、物种属性、系统发育、数据分层设置综合案例

基于R语言的物种气候生态位动态量化与分布特征模拟
基于R语言、MaxEnt模型融合技术的物种分布模拟、参数优化方法、结果分析制图与论文写作

基于R语言BIOMOD2 及机器学习方法的物种分布模拟与案例

<think>嗯,用户现在有五个林分的甲虫和植物数据,想分析甲虫种类或类群物种类、类群、盖度、高度的关系,考虑用HMSC。首先我需要确认HMSC是否适合这个问题。HMSC主要用于群落生态学联合物种分布模型,可以考虑空间、时间、环境变量以及物种间的相互作用。用户的数据结构是否符合HMSC的要求呢? 用户的数据括甲虫的多度和植物的多度、盖度、高度,这些都是物种环境变量。HMSC允许将环境变量作为解释变量,甲虫作为响应变量。这时候需要将植物的数据作为预测变量,甲虫作为响应变量输入模型。比如,每个样地中的植物种类、盖度、高度作为解释变量,甲虫的多度作为响应变量。 然后考虑模型是否处理层次结构,比如林分之间的差异,HMSC支持随机效应,可以加入林分作为随机效应,控制样本间的变异。另外,甲虫类群和植物类群可能需要预先分类,或者模型是否能处理这样的类群结构?可能需要将植物类群作为因子变量处理,或者进行主成分分析降维。 用户可能需要检查数据的正态性和分布情况,HMSC支持多种分布,比如泊松分布适用于多度数据。如果存在过多的零,可能需要零膨胀模型,但HMSC是否支持呢?需要确认。 另外,模型的结果可以提供变量重要性,评估哪些植物变量显著影响甲虫分布。同时,HMSC可以评估物种间的残差关联,可能揭示甲虫之间的相互作用,但用户的问题可能更关注植物甲虫的关系,这部分需要注意结果解释。 可能存在的挑战是样本量较小,五个林分可能不足以获得稳定的结果,但HMSC是否在小样本情况下表现良好?可能需要谨慎解释结果,或者考虑增加样本量。 最后,建议用户先进行数据预处理,确保变量格式正确,处理缺失值,选择合适的分布,设置随机效应,再进行模型拟合和评估。同时,验证模型假设,比如残差检查,以及进行交叉验证评估预测能力。</think>可以,HMSC(Hierarchical Modelling of Species Communities)模型非常适合分析甲虫类群植物类群、盖度、高度之间的关系。以下是分步说明: --- ### **第一步:数据准备** 1. **响应变量**:甲虫数据(行=样地,列=甲虫种类多度) $$ Y_{ij} = \text{样地i中甲虫j的多度} $$ 2. **解释变量**: - 植物种类多度(如物种A、B的盖度) - 植物类群特征(如乔木/灌木的盖度、平均高度) - 环境变量(可选,如林分类型) 3. **随机效应**:若数据来自不同林分,可将"林分"设为随机效应: $$ \text{模型公式:} Y \sim \text{植物变量} + (1|\text{林分}) $$ --- ### **第二步:模型构建** HMSC允许以下分析: 1. **变量重要性**:量化植物种类/类群对甲虫分布的解释力 $$ \beta_{kj} = \text{植物变量k对甲虫j的影响系数} $$ 2. **关联网络**:揭示甲虫植物间的正/负关联 3. **层次结构**:控制林分间的空间异质性 --- ### **第三步:实施步骤** 1. **安装R**: ```r install.packages("Hmsc") library(Hmsc) ``` 2. **定义模型**(示例): ```r model <- Hmsc( Y = 甲虫多度矩阵, XData = 植物特征数据框, XFormula = ~ 盖度 + 高度 + 物种A, ranLevels = list(林分 = 林分因子) ) ``` 3. **模型拟合评估**: ```r samples = 1000 # MCMC迭代次数 thin = 100 # 抽样间隔 fit = sampleMcmc(model, samples, thin) pred = computePredictedValues(fit) evaluateModelFit(hM=fit, predY=pred) ``` --- ### **第四步:结果解读** 1. **变量效应**:通过`plotBeta()`可视化植物变量对甲虫的影响 2. **方差分解**:查看植物变量解释的甲虫群落变异比例 3. **随机效应**:检查林分间的异质性是否显著 --- ### **注意事项** 1. **数据量要求**:5个林分可能样本量偏小,建议: - 增加样地数量(如每个林分设多个样地) - 使用弱信息先验(通过`setPriors()`调整) 2. **多度数据处理**:若甲虫多度为计数数据,选择泊松分布: ```r distr = "poisson" ``` --- ### **替代方案补充** 若HMSC结果不稳定,可尝试: 1. **RDA/db-RDA**(基于排序的线性模型) 2. **第四角分析**(通过RLQ关联群落环境) 建议先通过HMSC探索复杂关系,再结合简单模型验证关键结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值