方法分享 | 基于MaxEnt和ArcGIS预测物种分布

基于MaxEnt和ArcGIS预测物种分布

一、引言

MaxEnt模型,其全称为最大熵模型(Maximum Entropy Model)是一种常用于生物多样性研究中的模型,其基本思想是根据已知的约束条件,推断出概率分布函数,使其熵最大。在生物种群方面,MaxEnt模型可以用来预测物种分布和生境分布,尤其是在缺乏数据的情况下,可以通过利用物种和生境之间的已知约束条件,推断出物种的概率分布。此外,MaxEnt模型还可以用于评估物种对不同环境变化的响应能力,为生物保护和生态系统管理提供决策支持。

二、方法原理

三、软件操作

下载MaxEnt软件与示例数据(Tutorial data):

(https://biodiversityinformatics.amnh.org/open_source/maxent/)

软件运行需java环境。在 Samples 和 Environmental layers 选项中加载示例数据的csv和图层文件,并设置输出目录。示例数据为Bradypus variegatus,为中美洲及南美洲的一种三趾树懒,此处讨论各种环境条件对其分布的影响。

图片

点击 Settings ,将随机测试集比例设置为25或其他数值,点击 Run 运行。

图片

结果将显示在导出目录中,打开 bradypus_variegatus.html 文件,图像使用颜色来表示适生条件的预测概率,红色表示适合该物种条件的概率很高,绿色表示发现该物种的典型条件,浅蓝色表示适合条件的预测概率较低。

图片

适生条件概率分布图

表格显示,pre6190_l7(7月平均降雨量)、pre6190_l10(10月平均降雨量)和h_dem(海拔)是贡献度最大的变量,累计贡献百分比达73.2%。

图片

变量贡献分析

四、ArcGIS可视化

将导出目录的 bradypus_variegatus.asc 文件载入ArcGIS,点击工具箱中的 空间分析工具 → 重分类 → 重分类 ,即可对适生指数分布进行重新分类。

图片

重新生成的类别将产生为新的图数据。

图片

对数据进行添加图例、经纬度网格、比例尺等操作,即可生成适生指数分布图,预测适生区域。

图片

参考格式:Steven J. Phillips. 2017. A Brief Tutorial on Maxent. Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 2023-2-17.

*信息来源:海洋科学与管理公众号

 互助教程:623145513

MaxEnt(最大熵模型)是一种用于自然语言处理机器学习的统计模型。在应用MaxEnt模型进行刀切数据排序操作时,可以按照以下步骤进行调用: 1. 数据预处理:首先,需要对原始数据进行预处理,包括去除噪声冗余信息,将数据转化为适合MaxEnt模型处理的格式。这可能涉及到分词、去除停用词、标注等操作。 2. 特征提取:对于刀切数据排序问题,需要根据具体的任务数据特点选择合适的特征。特征可以是词频、词性、句法结构等。特征提取的目的是提取出最具有区分性的特征,以便MaxEnt模型进行训练预测。 3. 训练模型:通过调用MaxEnt模型的训练函数,将预处理特征提取后的数据传入模型中进行训练。在训练过程中,MaxEnt模型根据已有数据特征,学习到最合适的参数,以最大化熵的值。 4. 模型评估:训练完成后,需要对模型进行评估,评估模型在测试数据上的性能。常用的评估指标包括准确率、召回率F1值等。 5. 模型应用:训练完成并通过评估后,可以将模型应用于新的未知数据,进行刀切数据排序操作。通过调用MaxEnt模型的预测函数,输入待刀切或排序的数据,模型将输出相应的结果。 总的来说,调用MaxEnt模型进行刀切数据排序操作需要进行数据预处理、特征提取、模型训练评估等步骤。通过合理的特征选择训练,MaxEnt模型可以在这些任务中发挥较好的作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值