金豺算法GJO求解柔性作业车间调度问题FJSP

FJSP问题

有关于柔性作业车间(FJSP)建模、编码与解码等相关问题这里不再详细展开了,大家可以移步我的另一篇博文,有详细介绍:麻雀算法SSA解决柔性作业车间调度问题FJSP

金豺算法(GJO)

GJO灵感来源

金豺优化算法(Golden jackal optimization,GJO)是由Nitish Chopra等人于2022年提出的一种新的元启发式算法,该算法是一种模仿金豺的合作狩猎行为的新型智能优化算法。

金豺(Canis aureus)是一种中型陆生捕食者,属于犬科。它们分布于北非和东非、中东、欧洲、东南亚和中亚。它们的范围从埃塞俄比亚贝尔山脉的3,500米到厄立特里亚的海平面。金豺体长约70至85厘米,站立高度在40厘米左右,尾巴长约25厘米。皮毛通常是粗糙的棕色尖端和淡金色至黄色,随地区和季节而变化。豺体矮小和长腿允许它在超长的距离上驰骋以狩猎猎物。金豺吃动物和植物食物。它们是机会主义的猎人,饮食非常多样化,包括啮齿动物,小瞪羚,地面鸟类,野兔,爬行动物,青蛙,水果,鱼类和昆虫。

金豺的特点是一夫一妻制,成对居住。豺狼家庭由一两个被称为“助手”的成年人组成。它们是豺的前后代,成年后与父母一起生活了大约一年,照顾随后的孩子。年轻人在八周左右被培养,然后被吓倒。幼崽通过呕吐喂养,并在三个月左右开始吃固体食物。保护和食物由父母双方提供。家庭在许多方面因帮助者而得到加强。成年人使用“捕食者吠叫”和“隆隆咆哮”来警告幼崽躲避,独居的成年人可以有效地驱赶大型捕食者。食物也由助手带给哺乳期母亲,通过允许父母花更多的时间单独或成对狩猎,间接改善了幼崽的养育。金豺使用大量的嚎叫来定位彼此。一对通过一起嚎叫来展示他们之间的纽带。

金豺对(如图所示)一起狩猎和放松。他们的整个行为异常同步。已经记录了多达4-5个人的家庭群体和多达10个人的群体。觅食家庭一直占据着几平方公里的区域,其中的一部分被公豺或雌性豺用小便分开,以避免入侵者。合作觅食对豺狼来说势在必行,使它们能够在可用的地区猎杀更大的猎物。交配对狩猎的合作性比个体具有较高的杀伤率。当成对或成群狩猎时,豺与猎物平行奔跑,并在统一中超越猎物。当捕猎鸟类或水生啮齿动物时,它们会沿着狭窄的河流或溪流的两侧奔跑,并将猎物从一只豺赶到另一只豺狼。他们可能会在狩猎中得到助手的帮助。
GJO
图 1 (A)一对金豺 (B)金豺寻找猎物 (C)跟踪和包围猎物 (D)和 (E)扑向猎物。

如上,金豺对狩猎的最重要阶段(如图1所示)如下:
(1)搜索,并朝着猎物前进;
(2)包围并刺激猎物,直到它停止移动;
(3)扑向猎物。

GJO算法

搜索空间

GJO是一种基于群体的方法,其中初始解决方案作为第一次试验均匀分布在搜索空间中:
GJO-1
其中 Y.max和 Y.min是变量的上限和下限,“rand”是 0 到 1 范围内的均匀随机向量。
初始化创建初始矩阵猎物,其中第一个和第二个适者是豺对。猎物如下所示:
GJO-2
Yij表示第 i 个猎物的第 j 维度。总共有“n”个猎物和“d”个变量。猎物位置是指特定解决方案的参数。在优化过程中,应用适应度(目标)函数估计每个猎物的适应度值,随后的矩阵收集所有猎物的适应度值:
GJO-3
其中 FOA是保存每个猎物适应性的矩阵,Yij显示第 i 个猎物的第 j 维值,n 是猎物的数量,f 是目标函数。最适者称为公豺,第二个最适者称为母豺。豺对获得相应的猎物位置。

探索阶段或搜索猎物

GJO-4
GJO-5

开发阶段或包围和戳杀猎物

GJO-6

从勘探切换到开发

GJO-7
GJO-8

总述

总而言之,GJO中的搜索过程始于创建任意的猎物种群(候选解决方案)。在迭代过程中,猎物的可能位置由雄性和雌性豺狩猎对估计。种群中的每个候选人都会更新其与豺狼对的距离。E1参数分别从1.5减少到0,以强调勘探和开发。金豺狩猎对在E>1时偏离猎物,当E<1时聚集到猎物。最后,GJO算法通过满足最终标准来完成。GJO 算法的伪代码如图 4 所示。
伪代码

使用GJO求解FJSP问题

部分代码

main.m

clc;
clear all;

%% 算例载入
dictPath ='Brandimarte_Data';
dataName = 'Mk01.fjs';
dataRead(dictPath, dataName);

%% 载入数据
fileName = split(dataName,'.');
fileName = [fileName{1}, '.mat'];
eval(['load ' fileName]);

%% 金豺算法 GJO
cd('GJO\')
GJO_Result = GJO(MachineNum, jobNum, jobInfo, operaNumVec, candidateMachine);
cd('..\')

%% 迭代曲线
figure(1)
plot(GJO_Result.curve.min, 'r-', 'LineWidth', 1.5)
hold on
plot(GJO_Result.curve.avg, 'b--', 'LineWidth', 1.5)
grid on; box on
legend('最小值', '平均值')
ylabel('最大完工时间')
xlabel('迭代次数')
title('GJO 迭代曲线')

%% 甘特图
figure(2)
gantt_chart(GJO_Result.machineTable)
ylabel('机器编号')
xlabel('时间')

测试算例

使用 Brandimarte 测试集的 mk 算例进行测试。

测试结果

迭代曲线

GJO-10

甘特图

GJO-11

权利声明:

未经本人允许,本文所有内容禁止搬运,严禁盗图盗文!

代码传送门

本文代码及各种车间调度问题可咨询:
(1)扣扣:3249992049
(2)私信咨询 ~~

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
GJO算法是一种基于遗传算法的全局优化算法,其全称为Generalized Jaya Optimization algorithm。该算法最初由印度的两位学者Ganesh Kumar和Shakti Kumar Sharma在2014年提出,其核心思想是通过模拟自然界的进化过程,逐步寻找最优解。 GJO算法的基本流程如下: 1. 初始化种群:根据问题的特性,确定种群大小和每个个体的初始值。 2. 计算适应度函数:根据问题的要求,设计适应度函数,以评价每个个体的优劣。 3. 进行进化操作:包括交叉、变异等操作,通过模拟自然界的进化过程,逐步寻找最优解。 4. 判断终止条件:当达到一定迭代次数或者找到满足要求的解时,停止算法。 5. 输出结果:输出最优解和最优解对应的适应度值。 GJO算法相比于其他遗传算法的优点在于其更加灵活和高效,可以适应不同类型的优化问题,并且具有更好的全局寻优能力。具体来说,GJO算法引入了Jaya算法中的概念,即“合作与竞争”,使得各个个体之间可以相互协作,寻找最优解的速度更快。 在GJO算法中,个体之间的合作与竞争是通过引入两个重要的参数来实现的:共存因子和适应度差异因子。共存因子是指当两个个体的适应度相等时,它们之间的合作因子;适应度差异因子是指当两个个体的适应度差异较大时,它们之间的竞争因子。通过合理设置这两个参数,可以使得个体之间更好地协作和竞争,从而更快地找到最优解。 GJO算法虽然具有很多优点,但是也存在着一些不足之处。例如,GJO算法需要设置许多参数,这对于一些非专业人士来说可能会比较困难;此外,GJO算法有时会陷入局部最优解,需要采取一些特殊的策略来避免这种情况的发生。 总的来说,GJO算法是一种非常有潜力的全局优化算法,其在实际应用中也已经取得了一定的成果。未来,我们可以通过进一步的研究和改进,使得GJO算法在更多的领域中得到应用和推广。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值