金豺优化(GJO)算法(含MATLAB代码)

先做一个声明:文章是由我的个人公众号中的推送直接复制粘贴而来,因此对智能优化算法感兴趣的朋友,可关注我的个人公众号:启发式算法讨论。我会不定期在公众号里分享不同的智能优化算法,经典的,或者是近几年提出的新型智能优化算法,并附MATLAB代码。

金豺优化(GJO)算法:

金豺优化(Golden Jackal Optimization, GJO)算法是2022年提出的一种新的元启发式算法。GJO算法的种群实际上应该是金豺的猎物,作者是通过更新猎物的位置来实现算法的寻优过程。它的原始参考文献如下:

Chopra N, Ansari M M. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications[J]. Expert Systems with Applications, 2022, 198: 116924.

在讲算法之前,先说一下这个期刊吧,ESWA目前的IF是8.665,影响因子一直稳步上升,如下图所示。ESWA是中科院一区的TOP期刊,上面有很多关于群智能优化的文章,所以大家可以关注下。并且,这个期刊对实验的要求较高,对比实验必须充分、细腻,非常不错的一个期刊,强烈推荐阅读。

01
灵感来源

金豺,是一种中等大小的陆地食肉动物,属于犬科。它们分布在北非、东非、中东、欧洲、东南亚和中亚。金豺体长约70至85厘米,站立高度约40厘米,尾长约25厘米。它的皮毛通常是粗糙的棕色尖端和淡金色到黄色,因地区和季节而异。豺狼矮小的身体和长长的腿使它能够在很远的距离上奔跑捕食。金豺既吃动物,也吃植物。它们的饮食非常多样化,包括啮齿动物、小羚羊、小鸟、野兔、爬行动物、青蛙、水果、鱼和昆虫。

金豺是典型的一夫一妻制,金豺夫妇会一起狩猎,它们的整个行为非常同步。在几平方公里的范围内,雄性或雌性豺狼会用尿液将这些区域分开,以避免入侵者。合作觅食对豺狼来说是必不可少的,这让它们能够猎杀较大的猎物。配对的合作狩猎比个体狩猎有更高的猎杀率。当成对或成群狩猎时,豺狼与猎物平行奔跑,并超越猎物。在捕猎鸟类或水生啮齿动物时,它们会沿着狭窄的河流或小溪的两边奔跑,将猎物从一只豺狼驱赶到另一只豺狼。如图1所示,金豺成对狩猎的过程如下:(1). 搜索并向猎物靠近;(2). 包围并刺激猎物,直到猎物停止移动;(3). 攻击猎物。

 图1 A)一对金豺夫妇 B)金豺寻找猎物 C)跟踪和包围猎物 D)&E)扑向猎物

作者对金豺狼对的狩猎策略进行了数学建模,模仿金豺夫妇的合作狩猎行为,从而设计出了GJO算法。GJO算法包括两个基本步骤是搜索猎物、包围和攻击猎物。

02
算法设计

GJO算法主要包括搜索猎物、包围和攻击猎物两个步骤,分别对应种群的勘探与开发。与往期推送一样,目前我还不会在公众号里编辑数学公式。因此,这部分内容在Word文档里先写好,然后做成图片,最后导入。

由此,作者便通过模拟金豺捕食猎物的过程设计出了GJO算法。GJO算法设计简单,计算公式少,算法很容易实现。GJO算法与HHO算法一样,没有涉及参数的选取,也就是说,它的性能基本不受参数的影响,参数灵敏度低。但是,GJO算法的设计似乎和金豺并没有太多关系,应该是先设计出算法,再寻找可以套用的动物。当然,这只是个人观点哈~

03
计算流程

GJO算法的计算流程非常简单,这里我给出了它的伪代码,如图2所示。

图2 GJO算法的计算流程

04
实验仿真

GJO算法的设计简单,计算公式较少,容易实现。这里就来简单检验一下算法的性能。GJO算法的MATLAB程序是严格按照它的原始参考文献进行编码的。此外,种群规模N我取的50,最大迭代次数T为500,基准函数采用的是CEC2005测试集。

这里以CEC2005测试集中的单峰函数Sphere (f1)和多峰函数Ackley (f10)、Generalized Penalized 1 (f12)为例,展示GJO算法在30维环境下的收敛效果,如图3所示。由于我觉得GJO算法和HHO算法的设计相似,这里我将它和HHO算法进行了对比,实验环境与实验设置完全相同,大家可以观察一下两种算法的对比效果。

(a) f1

(b) f10

(c) f12

图3 GJO算法和HHO算法的收敛曲线对比

就收敛效果来看,HHO算法的性能优于GJO算法。这就说明,并不是新的算法就一定性能优越,所以不要一味去推崇新算法。但是,也可以发现两点:一是GJO算法的提升空间很大,如果对其进行改进或应用,可工作的内容还是很多的。GJO算法本身就是2022年的新算法,研究的人不多,其改进策略或应用并不广泛,有兴趣的同学可以进一步研究一下。二是GJO算法完全可以作为数值实验部分的对比算法。大家不要忘了,GJO算法发表在ESWA上,中科院一区的TOP期刊,认可度较高,而GJO算法的性能并不是很优越,容易被比下去。发表的期刊认可度高、算法又容易被比赢,又是2022年的新算法,这种便宜你也不占吗?

05
MATLAB代码

公众号:启发式算法讨论

  • 3
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
GJO算法是一种基于遗传算法的全局优化算法,其全称为Generalized Jaya Optimization algorithm。该算法最初由印度的两位学者Ganesh Kumar和Shakti Kumar Sharma在2014年提出,其核心思想是通过模拟自然界的进化过程,逐步寻找最优解。 GJO算法的基本流程如下: 1. 初始化种群:根据问题的特性,确定种群大小和每个个体的初始值。 2. 计算适应度函数:根据问题的要求,设计适应度函数,以评价每个个体的优劣。 3. 进行进化操作:包括交叉、变异等操作,通过模拟自然界的进化过程,逐步寻找最优解。 4. 判断终止条件:当达到一定迭代次数或者找到满足要求的解时,停止算法。 5. 输出结果:输出最优解和最优解对应的适应度值。 GJO算法相比于其他遗传算法的优点在于其更加灵活和高效,可以适应不同类型的优化问题,并且具有更好的全局寻优能力。具体来说,GJO算法引入了Jaya算法中的概念,即“合作与竞争”,使得各个个体之间可以相互协作,寻找最优解的速度更快。 在GJO算法中,个体之间的合作与竞争是通过引入两个重要的参数来实现的:共存因子和适应度差异因子。共存因子是指当两个个体的适应度相等时,它们之间的合作因子;适应度差异因子是指当两个个体的适应度差异较大时,它们之间的竞争因子。通过合理设置这两个参数,可以使得个体之间更好地协作和竞争,从而更快地找到最优解。 GJO算法虽然具有很多优点,但是也存在着一些不足之处。例如,GJO算法需要设置许多参数,这对于一些非专业人士来说可能会比较困难;此外,GJO算法有时会陷入局部最优解,需要采取一些特殊的策略来避免这种情况的发生。 总的来说,GJO算法是一种非常有潜力的全局优化算法,其在实际应用中也已经取得了一定的成果。未来,我们可以通过进一步的研究和改进,使得GJO算法在更多的领域中得到应用和推广。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

algorithmzzy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值