nn.transformer中的注意力权重提取,torch网络中间层提取

文章展示了如何在PyTorch的nn.transformer模块中,通过修改need_weights参数为True来获取注意力权重,并利用forward_hook函数提取TransformerEncoderLayer中多头注意力层的中间输出。示例代码解释了如何注册hook到特定层以观察输入和输出特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

nn.transformer源码中
原状:
在这里插入图片描述将need_weights改为True,这样multiheadattention才可以输出注意力权重。
在这里插入图片描述然后使用hook提取中间层输出,示例代码如下:

import torch
import torch.nn as nn

num_heads = 4
input_dim = 16
model = nn.TransformerEncoder(nn.TransformerEncoderLayer(input_dim, num_heads),6)
print(model)

query = torch.randn(10, 8, input_dim)

features_in_hook = []
features_out_hook = []

def hook(module, fea_in, fea_out):
    features_in_hook.append(fea_in)     #去掉这行就不会留下输入了
    features_out_hook.append(fea_out)
    return None

# for (name, module) in model.named_modules():      #看看各层的名字
#     print(name)

# layer_name = 'layers.5.self_attn'
# for (name, module) in model.named_modules():
#     if name == layer_name:
#         module.register_forward_hook(hook=hook)
        
model.layers[-1].self_attn.register_forward_hook(hook) #这样也可以代替上面四行,如果很多层,用上面的

c = model(query)

features_in_hook和features_out_hook为指定层的输入和输出
参考1
参考2

<think>好的,我需要帮用户增强FeatureFusionModule的信息过滤能力。首先,我需要理解现有的模块结构。这个模块包括通道注意力、空间注意力和特征变换三个部分。用户希望提升信息过滤,也就是让模块更有效地筛选有用的特征,抑制不相关的部分。 首先看通道注意力部分。当前使用的是自适应平均池化,接两个1x1卷积,中间有ReLU激活。可能的问题是,平均池化可能会丢失一些细节信息,而通道注意力结构可能不够复杂。改进的话,可以考虑同时使用平均池化和最大池化,将两者的信息结合起来,这样能捕捉更丰富的上下文信息。比如像CBAM那样,把两个池化的结果相加或拼接,再通过更深的网络,比如加入多层感知机(MLP),或者使用非对称卷积来增加感受野。 然后是空间注意力部分。当前是沿着通道维度取最大值和均值,拼接后用7x7卷积和Sigmoid生成空间权重。可能的改进点包括使用不同尺度的卷积核,比如并行使用3x3、5x5、7x7卷积,然后融合结果,这样能捕捉多尺度空间信息。另外,可以引入可变形卷积来适应不同形状的特征,或者加入残差连接,保留原始信息,防止梯度消失。 特征变换部分目前是3x3卷积、BN和GELU。可以考虑加入残差连接,让网络更容易训练,同时防止信息丢失。另外,可以增加深度可分离卷积来减少参数量,同时保持性能,或者使用空洞卷积扩大感受野,捕捉更全局的上下文。 其他可能的改进包括:在注意力模块后加入Dropout或随机池化,防止过拟合;引入通道混洗,增强通道间的信息交流;或者使用自注意力机制(如Transformer中的多头注意力)来捕捉长程依赖。 综合这些思路,我需要设计一个改进的模块。比如,在通道注意力中结合平均和最大池化,使用更复杂的MLP;空间注意力采用多尺度卷积;特征变换加入残差和深度可分离卷积。同时,确保这些改动不会让计算量过大,保持模块的轻量化。 需要验证每个改进是否有效,可能通过消融实验。但用户只需要代码改写,所以需要将这些改进点合理整合到现有结构中,保持代码的可读性和可维护性。最后,测试修改后的模块是否兼容原有输入输出,确保没有维度错误。</think>我们来逐步优化这个特征融合模块的信息过滤能力。以下是关键改进点及实现: $$改进思路 = 通道细化 + 多尺度空间感知 + 特征复用$$ ```python class EnhancedFeatureFusion(nn.Module): def __init__(self, in_channels, out_channels, expansion_ratio=4): super().__init__() # 增强通道注意力:双路径聚合 + 空洞卷积 self.channel_att = nn.Sequential( ChannelGate(in_channels, reduction=8), # 改进的通道门控 DepthwiseConv(in_channels, dilation=2) # 空洞深度卷积 ) # 多尺度空间注意力 self.spatial_att = MultiScaleSpatialGate(in_channels) # 特征变换:残差结构 + 动态卷积 self.conv = nn.Sequential( DynamicConv2d(in_channels, out_channels), nn.BatchNorm2d(out_channels), nn.GELU(), SqueezeExcitation(out_channels) # SE模块增强 ) # 特征重校准 self.gamma = nn.Parameter(torch.zeros(1)) def forward(self, x): identity = x # 通道域信息过滤 channel_att = self.channel_att(x) x = x * channel_att # 空间域信息过滤 spatial_att = self.spatial_att(x) x = x * spatial_att # 特征融合与变换 x = self.conv(x) # 残差连接 return x + self.gamma * identity # 实现子模块 class ChannelGate(nn.Module): def __init__(self, channels, reduction=8): super().__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.mlp = nn.Sequential( nn.Linear(channels, channels // reduction), nn.ReLU(), nn.Linear(channels // reduction, channels), nn.Sigmoid() ) def forward(self, x): avg_out = self.mlp(self.avg_pool(x).squeeze(-1).squeeze(-1)) max_out = self.mlp(self.max_pool(x).squeeze(-1).squeeze(-1)) channel_weights = torch.sigmoid(avg_out + max_out) return channel_weights.unsqueeze(-1).unsqueeze(-1) class MultiScaleSpatialGate(nn.Module): def __init__(self, channels): super().__init__() self.conv3x3 = nn.Conv2d(2, 1, 3, padding=1, dilation=1) self.conv5x5 = nn.Conv2d(2, 1, 5, padding=2, dilation=2) self.conv7x7 = nn.Conv2d(2, 1, 7, padding=3, dilation=3) self.fusion = nn.Conv2d(3, 1, 1) def forward(self, x): max_pool, _ = torch.max(x, dim=1, keepdim=True) avg_pool = torch.mean(x, dim=1, keepdim=True) concat = torch.cat([max_pool, avg_pool], dim=1) scale3 = self.conv3x3(concat) scale5 = self.conv5x5(concat) scale7 = self.conv7x7(concat) fused = torch.cat([scale3, scale5, scale7], dim=1) return torch.sigmoid(self.fusion(fused)) class DynamicConv2d(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.attention = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels, 4, 1), nn.ReLU(), nn.Conv2d(4, in_channels, 1), nn.Softmax(dim=1) ) self.conv = nn.Conv2d(in_channels, out_channels, 3, padding=1) def forward(self, x): att_weights = self.attention(x) weighted_x = x * att_weights return self.conv(weighted_x) ``` 关键改进说明: 1. **通道注意力增强**: - 采用双路径池化(平均+最大池化),公式: $$ChannelGate(x) = \sigma(MLP(AvgPool(x)) + MLP(MaxPool(x)))$$ - 增加空洞卷积扩大感受野 2. **多尺度空间注意力**: - 并行使用3个不同膨胀率的卷积核: $$SpatialAtt = \sigma(W_3∗[Max,Avg] ⊕ W_5∗[Max,Avg] ⊕ W_7∗[Max,Avg])$$ - 多尺度特征融合增强空间感知 3. **动态特征变换**: - 引入动态卷积核,参数计算: $$W_{dynamic} = Softmax(MLP(GAP(x)))$$ - 增加SE模块进行通道重校准 4. **结构改进**: - 添加残差连接:$Output = F(x) + \gamma x$ - 使用深度可分离卷积降低计算量 改进后的模块通过以下机制增强信息过滤: 1. 多尺度上下文建模 2. 动态特征选择机制 3. 跨维度交互增强 4. 自适应特征校准 实际使用时可调整超参数: - 通道压缩率(reduction) - 空洞卷积的膨胀率(dilation) - 多尺度卷积核尺寸组合 - 残差连接的权重系数γ
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

feiGeorge

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值