Manual Hyperparameter Tuning
-
Start with a good baseline, e.g. default settings in high-quality toolkits, values reported in papers
-
Tune a value, retrain the model to see the changes
-
Repeat multiple times to gain insights about
-
Which hyperparameters are important
-
How sensitive the model to hyperparameters
-
What are the good ranges
-
-
Needs careful experiment management
-
Save your training logs and hyperparameters to compare, share and
reproduce later-
The simplest way is saving logs in text and put key metrics in Excel
-
Better options exist, e
-