机器学习:9. 模型调参 Model Tuning

本文探讨了手动和自动机器学习模型调参的方法。手动调参从默认设置开始,逐步调整超参数,了解其重要性及敏感度。自动化调参(AutoML)则涵盖数据预处理、特征提取、模型选择等步骤,通过搜索算法优化超参数。尽管耗时,但借助工具如TensorBoard和weights & bias,调参过程得以记录和重现。同时,神经架构搜索(NAS)进一步自动化了神经网络模型的设计。
摘要由CSDN通过智能技术生成

Manual Hyperparameter Tuning
  • Start with a good baseline, e.g. default settings in high-quality toolkits, values reported in papers

  • Tune a value, retrain the model to see the changes

  • Repeat multiple times to gain insights about

    • Which hyperparameters are important

    • How sensitive the model to hyperparameters

    • What are the good ranges

  • Needs careful experiment management

  • Save your training logs and hyperparameters to compare, share and
    reproduce later

    • The simplest way is saving logs in text and put key metrics in Excel

    • Better options exist, e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cachel wood

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值