第P9周:YOLOv5-Backbone模块实现

 >- **🍨 本文为[🔗365天深度学习训练营] 中的学习记录博客
>- **🍖 原作者:[K同学啊 | 接辅导、项目定制]

目录

一、前期准备

1.设置GPU

2. 导入数据

3.数据可视化

4.加载数据

二、搭建包含Backbone模块的模型 

 1.Backbone骨干网络 

2.Conv模块

3.C3模块

4.SPP

三、训练模型

1.  编写训练函数

2.测试函数

3. 正式训练&设置超参数&保存最近模型

 四、结果可视化

 五、加载指定图片并进行预测 


一、前期准备

1.设置GPU

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from torchvision import transforms,datasets
import os,PIL,pathlib,warnings

warnings.filterwarnings('ignore')

device = torch.device("cuda" if torch.cuda.is_available else 'cpu')
device
device(type='cuda')

2. 导入数据

def LocalData(root):
    data_dir = pathlib.Path(root)
    data_path = list(data_dir.glob('*'))
    ClassNames = [str(path).split('\\')[-1] for path in data_path]
    
    train_transforms = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(
        mean=[0.486,0.456,0.406],
        std=[0.229,0.224,0.225]),
        transforms.Resize([224,224])
    ])
    
    total_dataset = torchvision.datasets.ImageFolder(data_dir,transform=train_transforms)
    print(total_dataset)
    print(total_dataset.class_to_idx)
    train_size = int(len(total_dataset)*0.8)
    test_size  = len(total_dataset)-train_size
    
    train_dataset,test_dataset = torch.utils.data.random_split(total_dataset,(train_size,test_size))
    
    return ClassNames,train_dataset,test_dataset

root = r"..\Netural_work_Data\P3_data"
output = r"..\model_param\p_9_model"
ClassNames,train_dataset,test_dataset = LocalData(root)
print(ClassNames)

Dataset ImageFolder
    Number of datapoints: 1125
    Root location: ..\Netural_work_Data\P3_data
    StandardTransform
Transform: Compose(
               ToTensor()
               Normalize(mean=[0.486, 0.456, 0.406], std=[0.229, 0.224, 0.225])
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=warn)
           )
{'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}
['cloudy', 'rain', 'shine', 'sunrise']

3.数据可视化

from matplotlib import pyplot as plt
from PIL import Image
def DisplayImage(root):
    img_files = [f for f in os.listdir(root) if f.endswith(('.jpeg','.png','.jpg'))]
    img_paths=[os.path.join(root,img_file) for img_file in img_files]
    
    fig,axes = plt.subplots(3,8,figsize=(16,6))
    
    for ax,i in zip(axes.flat,range(len(img_paths)-1)):
        img_path = os.path.join(root,img_paths[i])
        img = Image.open(img_path)
        ax.imshow(img)
        ax.axis('off')
    
    plt.show()

root = r"F:\Netural_work_Data\P3_data\cloudy"
DisplayImage(root)

4.加载数据

def DataLoader(train_dataset,test_dataset,batch_size):
    train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size = batch_size,
                                           shuffle=True,
                                           num_workers=2)
    test_dl  = torch.utils.data.DataLoader(train_dataset,
                                           batch_size = batch_size,
                                           shuffle=False,
                                           num_workers=2)
    for X,y in train_dl:
        print('shape of  X[N,C,H,W]:',X.shape)
        print('shape of y:',y.shape,y.dtype)
        break
        
    return (train_dl,test_dl)

batch_size = 32
train_dl,test_dl = DataLoader(train_dataset,train_dataset,batch_size)
shape of  X[N,C,H,W]: torch.Size([32, 3, 224, 224])
shape of y: torch.Size([32]) torch.int64

二、搭建包含Backbone模块的模型 

 1.Backbone骨干网络 

参考文章:【YOLOv5】Backbone、Neck、Head各模块详解_yolov5 backbone-CSDN博客

骨干网络是指用来提取图像特征的网络,它的主要作用是将原始的输入图像转化为多层特征图,以便后续的目标检测任务使用。在Yolov5中,使用的是CSPDarknet53或ResNet骨干网络,这两个网络都是相对轻量级的,能够在保证较高检测精度的同时,尽可能地减少计算量和内存占用。
Backbone中的主要结构有Conv模块、C3模块、SPPF模块。 

2.Conv模块

Conv模块是卷积神经网络中常用的一种基础模块,它主要由卷积层BN层激活函数组成。下面对这些组成部分进行详细解析。

卷积层是卷积神经网络中最基础的层之一,用于提取输入特征中的局部空间信息。卷积操作可以看作是一个滑动窗口,窗口在输入特征上滑动,并将窗口内的特征值与卷积核进行卷积操作,从而得到输出特征。卷积层通常由多个卷积核组成,每个卷积核对应一个输出通道。卷积核的大小、步长、填充方式等超参数决定了卷积层的输出大小和感受野大小。卷积神经网络中,卷积层通常被用来构建特征提取器。

BN层是在卷积层之后加入的一种归一化层,用于规范化神经网络中的特征值分布。它可以加速训练过程,提高模型泛化能力,减轻模型对初始化的依赖性。BN层的输入为一个batch的特征图,它将每个通道上的特征进行均值和方差的计算,并对每个通道上的特征进行标准化处理。标准化后的特征再通过一个可学习的仿射变换(拉伸和偏移)进行还原,从而得到BN层的输出


激活函数是一种非线性函数,用于给神经网络引入非线性变换能力。常用的激活函数包括sigmoid、ReLU、LeakyReLU、ELU等。它们在输入值的不同范围内都有不同的输出表现,可以更好地适应不同类型的数据分布。

3.C3模块

C3模块是YOLOv5网络中的一个重要组成部分,其主要作用是增加网络的深度和感受野,提高特征提取的能力。

C3模块是由三个Conv块构成的,其中第一个Conv块的步幅为2,可以将特征图的尺寸减半,第二个Conv块和第三个Conv块的步幅为1。C3模块中的Conv块采用的都是3x3的卷积核。在每个Conv块之间,还加入了BN层和LeakyReLU激活函数,以提高模型的稳定性和泛化性能。

C3模块中的第一个Conv块的步幅为2,红色方框内两个Conv组成Bottleneck,这意味着它会将特征图的尺寸减半。这样做的目的是为了增加网络的感受野,同时减少计算量。通过将特征图的尺寸减半,可以使网络更加关注物体的全局信息,从而提高特征提取的效果。

C3模块中的第二个Conv块和第三个Conv块的步幅为1,这意味着它们不会改变特征图的尺寸。这样做的目的是为了保持特征图的空间分辨率,从而更好地保留物体的局部信息。同时,这两个Conv块的主要作用是进一步提取特征,增加网络的深度和感受野。

总的来说,C3模块通过增加网络的深度和感受野,提高了特征提取的能力。这对于目标检测等计算机视觉任务来说非常重要,因为这些任务需要对物体进行准确的识别和定位,而准确的识别和定位需要良好的特征提取能力。

4.SPP

SPP模块是一种池化模块,通常应用于卷积神经网络中,旨在实现输入数据的空间不变性和位置不变性,以便于提高神经网络的识别能力。其主要思想是将不同大小的感受野应用于同一张图像,从而能够捕捉到不同尺度的特征信息。在SPP模块中,首先对输入特征图进行不同大小的池化操作,以得到一组不同大小的特征图。然后将这些特征图连接在一起,并通过全连接层进行降维,最终得到固定大小的特征向量。

SPP模块通常由三个步骤组成:

  • 池化:将输入特征图分别进行不同大小的池化操作,以获得一组不同大小的特征图。
  • 连接:将不同大小的特征图连接在一起。
  • 全连接:通过全连接层将连接后的特征向量降维,得到固定大小的特征向量。
import torch.nn.functional as F

def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
    
class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
"""
这个是YOLOv5, 6.0版本的主干网络,这里进行复现
(注:有部分删改,详细讲解将在后续进行展开)
"""
class YOLOv5_backbone(nn.Module):
    def __init__(self):
        super(YOLOv5_backbone, self).__init__()
        
        self.Conv_1 = Conv(3, 64, 3, 2, 2) 
        self.Conv_2 = Conv(64, 128, 3, 2) 
        self.C3_3   = C3(128,128)
        self.Conv_4 = Conv(128, 256, 3, 2) 
        self.C3_5   = C3(256,256)
        self.Conv_6 = Conv(256, 512, 3, 2) 
        self.C3_7   = C3(512,512)
        self.Conv_8 = Conv(512, 1024, 3, 2) 
        self.C3_9   = C3(1024, 1024)
        self.SPPF   = SPPF(1024, 1024, 5)
        
        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=65536, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features=100, out_features=4)
        )
        
    def forward(self, x):
        x = self.Conv_1(x)
        x = self.Conv_2(x)
        x = self.C3_3(x)
        x = self.Conv_4(x)
        x = self.C3_5(x)
        x = self.Conv_6(x)
        x = self.C3_7(x)
        x = self.Conv_8(x)
        x = self.C3_9(x)
        x = self.SPPF(x)
        
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
    
model = YOLOv5_backbone().to(device)
model
Using cuda device

Out[7]:

YOLOv5_backbone(
  (Conv_1): Conv(
    (conv): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2), bias=False)
    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (Conv_2): Conv(
    (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_3): C3(
    (cv1): Conv(
      (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (Conv_4): Conv(
    (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_5): C3(
    (cv1): Conv(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (Conv_6): Conv(
    (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_7): C3(
    (cv1): Conv(
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (Conv_8): Conv(
    (conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_9): C3(
    (cv1): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (SPPF): SPPF(
    (cv1): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
  )
  (classifier): Sequential(
    (0): Linear(in_features=65536, out_features=100, bias=True)
    (1): ReLU()
    (2): Linear(in_features=100, out_features=4, bias=True)
  )
)
# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 113, 113]           1,728
       BatchNorm2d-2         [-1, 64, 113, 113]             128
              SiLU-3         [-1, 64, 113, 113]               0
              Conv-4         [-1, 64, 113, 113]               0
            Conv2d-5          [-1, 128, 57, 57]          73,728
       BatchNorm2d-6          [-1, 128, 57, 57]             256
              SiLU-7          [-1, 128, 57, 57]               0
              Conv-8          [-1, 128, 57, 57]               0
            Conv2d-9           [-1, 64, 57, 57]           8,192
      BatchNorm2d-10           [-1, 64, 57, 57]             128
             SiLU-11           [-1, 64, 57, 57]               0
             Conv-12           [-1, 64, 57, 57]               0
           Conv2d-13           [-1, 64, 57, 57]           4,096
      BatchNorm2d-14           [-1, 64, 57, 57]             128
             SiLU-15           [-1, 64, 57, 57]               0
             Conv-16           [-1, 64, 57, 57]               0
           Conv2d-17           [-1, 64, 57, 57]          36,864
      BatchNorm2d-18           [-1, 64, 57, 57]             128
             SiLU-19           [-1, 64, 57, 57]               0
             Conv-20           [-1, 64, 57, 57]               0
       Bottleneck-21           [-1, 64, 57, 57]               0
           Conv2d-22           [-1, 64, 57, 57]           8,192
      BatchNorm2d-23           [-1, 64, 57, 57]             128
             SiLU-24           [-1, 64, 57, 57]               0
             Conv-25           [-1, 64, 57, 57]               0
           Conv2d-26          [-1, 128, 57, 57]          16,384
      BatchNorm2d-27          [-1, 128, 57, 57]             256
             SiLU-28          [-1, 128, 57, 57]               0
             Conv-29          [-1, 128, 57, 57]               0
               C3-30          [-1, 128, 57, 57]               0
           Conv2d-31          [-1, 256, 29, 29]         294,912
      BatchNorm2d-32          [-1, 256, 29, 29]             512
             SiLU-33          [-1, 256, 29, 29]               0
             Conv-34          [-1, 256, 29, 29]               0
           Conv2d-35          [-1, 128, 29, 29]          32,768
      BatchNorm2d-36          [-1, 128, 29, 29]             256
             SiLU-37          [-1, 128, 29, 29]               0
             Conv-38          [-1, 128, 29, 29]               0
           Conv2d-39          [-1, 128, 29, 29]          16,384
      BatchNorm2d-40          [-1, 128, 29, 29]             256
             SiLU-41          [-1, 128, 29, 29]               0
             Conv-42          [-1, 128, 29, 29]               0
           Conv2d-43          [-1, 128, 29, 29]         147,456
      BatchNorm2d-44          [-1, 128, 29, 29]             256
             SiLU-45          [-1, 128, 29, 29]               0
             Conv-46          [-1, 128, 29, 29]               0
       Bottleneck-47          [-1, 128, 29, 29]               0
           Conv2d-48          [-1, 128, 29, 29]          32,768
      BatchNorm2d-49          [-1, 128, 29, 29]             256
             SiLU-50          [-1, 128, 29, 29]               0
             Conv-51          [-1, 128, 29, 29]               0
           Conv2d-52          [-1, 256, 29, 29]          65,536
      BatchNorm2d-53          [-1, 256, 29, 29]             512
             SiLU-54          [-1, 256, 29, 29]               0
             Conv-55          [-1, 256, 29, 29]               0
               C3-56          [-1, 256, 29, 29]               0
           Conv2d-57          [-1, 512, 15, 15]       1,179,648
      BatchNorm2d-58          [-1, 512, 15, 15]           1,024
             SiLU-59          [-1, 512, 15, 15]               0
             Conv-60          [-1, 512, 15, 15]               0
           Conv2d-61          [-1, 256, 15, 15]         131,072
      BatchNorm2d-62          [-1, 256, 15, 15]             512
             SiLU-63          [-1, 256, 15, 15]               0
             Conv-64          [-1, 256, 15, 15]               0
           Conv2d-65          [-1, 256, 15, 15]          65,536
      BatchNorm2d-66          [-1, 256, 15, 15]             512
             SiLU-67          [-1, 256, 15, 15]               0
             Conv-68          [-1, 256, 15, 15]               0
           Conv2d-69          [-1, 256, 15, 15]         589,824
      BatchNorm2d-70          [-1, 256, 15, 15]             512
             SiLU-71          [-1, 256, 15, 15]               0
             Conv-72          [-1, 256, 15, 15]               0
       Bottleneck-73          [-1, 256, 15, 15]               0
           Conv2d-74          [-1, 256, 15, 15]         131,072
      BatchNorm2d-75          [-1, 256, 15, 15]             512
             SiLU-76          [-1, 256, 15, 15]               0
             Conv-77          [-1, 256, 15, 15]               0
           Conv2d-78          [-1, 512, 15, 15]         262,144
      BatchNorm2d-79          [-1, 512, 15, 15]           1,024
             SiLU-80          [-1, 512, 15, 15]               0
             Conv-81          [-1, 512, 15, 15]               0
               C3-82          [-1, 512, 15, 15]               0
           Conv2d-83           [-1, 1024, 8, 8]       4,718,592
      BatchNorm2d-84           [-1, 1024, 8, 8]           2,048
             SiLU-85           [-1, 1024, 8, 8]               0
             Conv-86           [-1, 1024, 8, 8]               0
           Conv2d-87            [-1, 512, 8, 8]         524,288
      BatchNorm2d-88            [-1, 512, 8, 8]           1,024
             SiLU-89            [-1, 512, 8, 8]               0
             Conv-90            [-1, 512, 8, 8]               0
           Conv2d-91            [-1, 512, 8, 8]         262,144
      BatchNorm2d-92            [-1, 512, 8, 8]           1,024
             SiLU-93            [-1, 512, 8, 8]               0
             Conv-94            [-1, 512, 8, 8]               0
           Conv2d-95            [-1, 512, 8, 8]       2,359,296
      BatchNorm2d-96            [-1, 512, 8, 8]           1,024
             SiLU-97            [-1, 512, 8, 8]               0
             Conv-98            [-1, 512, 8, 8]               0
       Bottleneck-99            [-1, 512, 8, 8]               0
          Conv2d-100            [-1, 512, 8, 8]         524,288
     BatchNorm2d-101            [-1, 512, 8, 8]           1,024
            SiLU-102            [-1, 512, 8, 8]               0
            Conv-103            [-1, 512, 8, 8]               0
          Conv2d-104           [-1, 1024, 8, 8]       1,048,576
     BatchNorm2d-105           [-1, 1024, 8, 8]           2,048
            SiLU-106           [-1, 1024, 8, 8]               0
            Conv-107           [-1, 1024, 8, 8]               0
              C3-108           [-1, 1024, 8, 8]               0
          Conv2d-109            [-1, 512, 8, 8]         524,288
     BatchNorm2d-110            [-1, 512, 8, 8]           1,024
            SiLU-111            [-1, 512, 8, 8]               0
            Conv-112            [-1, 512, 8, 8]               0
       MaxPool2d-113            [-1, 512, 8, 8]               0
       MaxPool2d-114            [-1, 512, 8, 8]               0
       MaxPool2d-115            [-1, 512, 8, 8]               0
          Conv2d-116           [-1, 1024, 8, 8]       2,097,152
     BatchNorm2d-117           [-1, 1024, 8, 8]           2,048
            SiLU-118           [-1, 1024, 8, 8]               0
            Conv-119           [-1, 1024, 8, 8]               0
            SPPF-120           [-1, 1024, 8, 8]               0
          Linear-121                  [-1, 100]       6,553,700
            ReLU-122                  [-1, 100]               0
          Linear-123                    [-1, 4]             404
================================================================
Total params: 21,729,592
Trainable params: 21,729,592
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 137.59
Params size (MB): 82.89
Estimated Total Size (MB): 221.06
----------------------------------------------------------------

三、训练模型

1.  编写训练函数

def train(dataloader,model,optimizer,loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    
    train_loss,train_acc = 0,0
    
    for X,y in dataloader:
        X,y = X.to(device),y.to(device)
        
        #计算误差
        pred = model(X)
        loss = loss_fn(pred,y)
        
        #反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        #记录loss与acc
        train_loss += loss.item()
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
    
    train_loss /= num_batches
    train_acc  /= size
    
    return train_acc,train_loss

2.测试函数

def train(dataloader,model,optimizer,loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    
    train_loss,train_acc = 0,0
    
    for X,y in dataloader:
        X,y = X.to(device),y.to(device)
        
        #计算误差
        pred = model(X)
        loss = loss_fn(pred,y)
        
        #反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        #记录loss与acc
        train_loss += loss.item()
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
    
    train_loss /= num_batches
    train_acc  /= size
    
    return train_acc,train_loss

3. 正式训练&设置超参数&保存最近模型

import time
import copy

'''设置超参数'''
start_epoch = 0
epochs = 30
learn_rate = 1e-4
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),lr=learn_rate)
type(optimizer)
lambda1 = lambda epoch:0.92**(epoch//4)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda=lambda1)

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []
epoch_best_acc = 0

'''加载之前的模型'''
if not os.path.exists(output) or not os.path.isdir(output):
    os.makedirs(output)
if start_epoch > 0:
    resumeFile = os.path.join(output, 'epoch'+str(start_epoch)+'.pkl')
    if not os.path.exists(resumeFile) or not os.path.isfile(resumeFile):
        start_epoch = 0 
    else:
        model.load_state_dict(torch.load(resumeFile))

'''开始训练'''
print('\nStarting Training...')
best_model= None
for epoch in range(start_epoch, epochs):
    model.train()
    epoch_train_acc,epoch_train_loss = train(train_dl,model,optimizer,loss_fn)
    scheduler.step()
    
    model.eval()
    epoch_test_acc,epoch_test_loss = test(test_dl,model,loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(time.strftime('[%Y-%m-%d %H:%M:%S]'), template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))

    # 保存最佳模型
    if epoch_test_acc>epoch_best_acc:
        ''' 保存最优模型参数 '''
        epoch_best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)
        print(('acc = {:.1f}%, saving model to best.pkl').format(epoch_best_acc*100))
        saveFile = os.path.join(output, 'best.pkl')
        torch.save(best_model.state_dict(), saveFile)
print('Done\n')


''' 保存最新模型参数 '''
saveFile = os.path.join(output, 'epoch'+str(epochs)+'.pkl')
torch.save(model.state_dict(), saveFile)

Starting Training...
[2023-12-15 10:29:21] Epoch: 1, Train_acc:87.1%, Train_loss:0.466, Test_acc:91.9%, Test_loss:0.224, Lr:1.00E-04
acc = 91.9%, saving model to best.pkl
[2023-12-15 10:30:05] Epoch: 2, Train_acc:89.8%, Train_loss:0.276, Test_acc:94.3%, Test_loss:0.157, Lr:1.00E-04
acc = 94.3%, saving model to best.pkl
[2023-12-15 10:30:48] Epoch: 3, Train_acc:91.7%, Train_loss:0.260, Test_acc:95.7%, Test_loss:0.122, Lr:1.00E-04
acc = 95.7%, saving model to best.pkl
[2023-12-15 10:31:25] Epoch: 4, Train_acc:95.6%, Train_loss:0.130, Test_acc:96.7%, Test_loss:0.124, Lr:9.20E-05
acc = 96.7%, saving model to best.pkl
[2023-12-15 10:32:00] Epoch: 5, Train_acc:94.6%, Train_loss:0.151, Test_acc:98.3%, Test_loss:0.063, Lr:9.20E-05
acc = 98.3%, saving model to best.pkl
[2023-12-15 10:32:30] Epoch: 6, Train_acc:96.9%, Train_loss:0.107, Test_acc:98.3%, Test_loss:0.050, Lr:9.20E-05
[2023-12-15 10:33:02] Epoch: 7, Train_acc:96.8%, Train_loss:0.108, Test_acc:95.7%, Test_loss:0.119, Lr:9.20E-05
[2023-12-15 10:33:32] Epoch: 8, Train_acc:92.7%, Train_loss:0.446, Test_acc:96.7%, Test_loss:0.078, Lr:8.46E-05
[2023-12-15 10:34:03] Epoch: 9, Train_acc:93.7%, Train_loss:0.230, Test_acc:98.1%, Test_loss:0.050, Lr:8.46E-05
[2023-12-15 10:34:32] Epoch:10, Train_acc:94.8%, Train_loss:0.163, Test_acc:98.4%, Test_loss:0.050, Lr:8.46E-05
acc = 98.4%, saving model to best.pkl
[2023-12-15 10:35:04] Epoch:11, Train_acc:94.7%, Train_loss:0.272, Test_acc:97.9%, Test_loss:0.051, Lr:8.46E-05
[2023-12-15 10:35:34] Epoch:12, Train_acc:93.4%, Train_loss:0.266, Test_acc:97.6%, Test_loss:0.086, Lr:7.79E-05
[2023-12-15 10:36:05] Epoch:13, Train_acc:95.2%, Train_loss:0.130, Test_acc:99.2%, Test_loss:0.038, Lr:7.79E-05
acc = 99.2%, saving model to best.pkl
[2023-12-15 10:36:35] Epoch:14, Train_acc:98.4%, Train_loss:0.199, Test_acc:99.4%, Test_loss:0.019, Lr:7.79E-05
acc = 99.4%, saving model to best.pkl
[2023-12-15 10:37:06] Epoch:15, Train_acc:94.1%, Train_loss:0.169, Test_acc:98.2%, Test_loss:0.058, Lr:7.79E-05
[2023-12-15 10:37:38] Epoch:16, Train_acc:97.2%, Train_loss:0.139, Test_acc:99.2%, Test_loss:0.025, Lr:7.16E-05
[2023-12-15 10:38:10] Epoch:17, Train_acc:98.1%, Train_loss:0.061, Test_acc:99.8%, Test_loss:0.009, Lr:7.16E-05
acc = 99.8%, saving model to best.pkl
[2023-12-15 10:38:39] Epoch:18, Train_acc:99.1%, Train_loss:0.080, Test_acc:99.9%, Test_loss:0.007, Lr:7.16E-05
acc = 99.9%, saving model to best.pkl
[2023-12-15 10:39:10] Epoch:19, Train_acc:97.3%, Train_loss:0.215, Test_acc:99.6%, Test_loss:0.013, Lr:7.16E-05
[2023-12-15 10:39:41] Epoch:20, Train_acc:95.7%, Train_loss:0.120, Test_acc:99.3%, Test_loss:0.027, Lr:6.59E-05
[2023-12-15 10:40:13] Epoch:21, Train_acc:99.0%, Train_loss:0.030, Test_acc:99.7%, Test_loss:0.014, Lr:6.59E-05
[2023-12-15 10:40:45] Epoch:22, Train_acc:98.7%, Train_loss:0.044, Test_acc:100.0%, Test_loss:0.007, Lr:6.59E-05
acc = 100.0%, saving model to best.pkl
[2023-12-15 10:41:18] Epoch:23, Train_acc:99.4%, Train_loss:0.043, Test_acc:100.0%, Test_loss:0.002, Lr:6.59E-05
[2023-12-15 10:41:49] Epoch:24, Train_acc:98.6%, Train_loss:0.048, Test_acc:100.0%, Test_loss:0.005, Lr:6.06E-05
[2023-12-15 10:42:20] Epoch:25, Train_acc:98.4%, Train_loss:0.063, Test_acc:99.9%, Test_loss:0.005, Lr:6.06E-05
[2023-12-15 10:42:52] Epoch:26, Train_acc:98.4%, Train_loss:0.046, Test_acc:99.6%, Test_loss:0.012, Lr:6.06E-05
[2023-12-15 10:43:25] Epoch:27, Train_acc:99.0%, Train_loss:0.030, Test_acc:99.9%, Test_loss:0.004, Lr:6.06E-05
[2023-12-15 10:43:57] Epoch:28, Train_acc:98.7%, Train_loss:0.047, Test_acc:99.9%, Test_loss:0.008, Lr:5.58E-05
[2023-12-15 10:44:27] Epoch:29, Train_acc:99.3%, Train_loss:0.028, Test_acc:100.0%, Test_loss:0.003, Lr:5.58E-05
[2023-12-15 10:45:01] Epoch:30, Train_acc:99.7%, Train_loss:0.015, Test_acc:100.0%, Test_loss:0.001, Lr:5.58E-05
Dones

 四、结果可视化

''' 结果可视化 '''
def displayResult(train_acc, test_acc, train_loss, test_loss, start_epoch, epochs, output=''):
 
    plt.rcParams['font.sans-serif']    = ['SimHei']  # 用来正常显示中文标签
    plt.rcParams['axes.unicode_minus'] = False       # 用来正常显示负号
    plt.rcParams['figure.dpi']         = 100         # 分辨率
    
    epochs_range = range(start_ epoch, epochs)
    
    plt.figure('Result Visualization', figsize=(12, 3))
    plt.subplot(1, 2, 1)
    
    plt.plot(epochs_range, train_acc, label='Training Accuracy')
    plt.plot(epochs_range, test_acc, label='Test Accuracy')
    plt.legend(loc='lower right')
    plt.title('Training and Validation Accuracy')
    
    plt.subplot(1, 2, 2)
    plt.plot(epochs_range, train_loss, label='Training Loss')
    plt.plot(epochs_range, test_loss, label='Test Loss')
    plt.legend(loc='upper right')
    plt.title('Training and Validation Loss')
    plt.savefig(os.path.join(output, 'AccuracyLoss.png'))
    plt.show()
 
''' 绘制准确率&损失率曲线图 '''
displayResult(train_acc, test_acc, train_loss, test_loss, start_epoch, epochs, output)

 五、加载指定图片并进行预测 

''' 预测函数 '''
import PIL
from PIL import Image
 
def predict(model, img_path):
    img = Image.open(img_path)
    test_transforms = torchvision.transforms.Compose([
        torchvision.transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
        torchvision.transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
        torchvision.transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
            mean=[0.485, 0.456, 0.406], 
            std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
    ])
    img = test_transforms(img)
    img = img.to(device).unsqueeze(0)
    output = model(img)
    #print(output.argmax(1))
    
    _, indices = torch.max(output, 1)
    percentage = torch.nn.functional.softmax(output, dim=1)[0] * 100
    perc = percentage[int(indices)].item()
    result = classeNames[indices]
    print('predicted:', result, perc)
 
 
if __name__=='__main__':
    classeNames = list({'Cloudy': 0, 'Rain': 1, 'Shine': 2, 'Sunrise': 3})
    num_classes = len(classeNames)
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("Using {} device\n".format(device))
    
    model = YOLOv5_backbone().to(device)
    model.load_state_dict(torch.load(r'F:\model_param\p_9_model\best.pkl'))
    model.eval()
    
    img_path = r'F:\Netural_work_Data\P3_data\cloudy\cloudy1.jpg'
    predict(model, img_path)

Using cuda device

predicted: Cloudy 99.98368072509766
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值