matlab+yalmip+cplex求解车辆路径优化问题(VRP)--VRP问题的求解

采用cplex求解VRPTW问题

VRPTW(Vehicle Routing Problem with Time Windows)是一类涉及到多个配送点、多辆车辆的路径规划问题,每个客户有一定的数量需求和时间窗口,需要在规定时间内配送到指定地点。Cplex是一种高效、强大的数学优化求解器,能够解决复杂的VRPTW问题。

Cplex求解VRPTW问题的方法通常包括以下步骤:

1.建模:将VRPTW问题转化为数学模型,包括客户需求、时间窗口、车辆容量、路程、时间等约束条件。

2.求解:利用Cplex求解器,将VRPTW问题的数学模型输入,利用线性规划或者混合整数规划求解。

3.解析:Cplex求解器输出求解结果,包括每辆车的路径、客户的配送时间、总路程、总时间等信息。

4.优化:根据输出结果,优化车辆路径规划和配送时间,重新建模求解,不断迭代,直至求解满足约束条件的最优解。

模型

在这里插入图片描述
在这里插入图片描述

直接上代码

clear
clc
%% 小规模数据
d=[0,120,170,150,140,170,140,120,190];          %需求量
a=[0,912,825,65,727,15,621,170,255];            %左时间窗
b=[1236,967,870,146,782,67,702,225,324];        %右时间窗
E=a(1);                                         %配送中心左时间窗
L=b(1);                                         %配送中心右时间窗
s=[0,90,90,90,90,90,90,90,90];                  %服务时间
x=[81.5,87,75,85,89,77,76,87,73];               %横坐标
y=[41.5,37,53,52,41,58,45,53,38];               %纵坐标

d=[d,d(1)];                                     %体现出数学模型中的第n+1个节点,也就是配送中心
a=[a,a(1)];                                     %体现出数学模型中的第n+1个节点,也就是配送中心
b=[b,b(1)];                                     %体现出数学模型中的第n+1个节点,也就是配送中心
s=[s,s(1)];                                     %体现出数学模型中的第n+1个节点,也就是配送中心
x=[x,x(1)];                                     %体现出数学模型中的第n+1个节点,也就是配送中心
y=[y,y(1)];                                     %体现出数学模型中的第n+1个节点,也就是配送中心

axis=[x' y'];                                   %顾客坐标
h=pdist(axis);
Dij=squareform(h);                              %距离矩阵
%% 配送车辆和顾客数据
vNum=5;                                         %车数量
nodeNum=numel(a);                               %总节点数量
C=600;                                          %单车容量
%% 决策变量
Xijk=binvar(nodeNum,nodeNum,vNum,'full');       %i、j节点之间是否由第k辆车进行配送
Wik=sdpvar(nodeNum,vNum,'full');                %表示车辆k对i点的开始服务时间
M=1e7;                                          %足够大的数,对应公式(6)中的Mij
tol=1e-7;                                       %决策变量精确度
%% 目标函数,对应公式(1)
obj=0;
for i=1:nodeNum
    for j=1:nodeNum
        for k=1:vNum
            obj=obj+Dij(i,j)*Xijk(i,j,k);
        end
    end
end
f=obj;
%% 约束条件
F=[];
%每个需求点i都会被一辆车经过,对应公式(2)
for i=2:nodeNum-1
    F=[F;sum(Xijk(i,1,:))==0;sum(Xijk(i,i,:))==0;sum(sum(Xijk(i,:,:)))==1];
end
%每条配送路线从配送中心出发只能前往一个顾客点,对应公式(3)
for k=1:vNum
    F=[F;Xijk(1,1,k)==0;sum(Xijk(1,:,k))==1];
end
%流量平衡,对应公式(4)
for j=2:nodeNum-1
    for k=1:vNum
        F=[F;sum(Xijk(j,:,k))==sum(Xijk(:,j,k))];
    end
end
%每条配送路线都必须返回配送中心,对应公式(5)
for k=1:vNum
    F=[F;Xijk(nodeNum,nodeNum,k)==0;sum(Xijk(:,nodeNum,k))==1];
end
%时间连续不等式,对应公式(6)
for k=1:vNum
    for i=1:nodeNum
        for j=1:nodeNum
            F=[F;Wik(i,k)+s(i)+Dij(i,j)-Wik(j,k)<=(1-Xijk(i,j,k))*M];
        end
    end
end
%顾客时间窗约束,对应公式(7)
for k=1:vNum
    for i=2:nodeNum-1
        F=[F;a(i)*sum(Xijk(i,:,k))<=Wik(i,k)];
        F=[F;Wik(i,k)<=b(i)*sum(Xijk(i,:,k))];
    end
end
%配送中心时间窗约束,对应公式(8)
for k=1:vNum
    for i=[1,nodeNum]
        F=[F;E<=Wik(i,k)];
        F=[F;Wik(i,k)<=L];
    end
end
%装载量约束,对应公式(9)
for k=1:vNum
    load=0;
    for i=2:nodeNum-1
        load=load+d(i)*sum(Xijk(i,:,k));
    end
    F=[F;load<=C]; %每个回路上的需求量之和小于车的容量
end
%% 参数配置 'solver','cplex'  'verbose',0,'solver','cplex'
ops=sdpsettings();
%% 求解问题
sol=solvesdp(F,f,ops);
f=double(f);
Xijk=double(Xijk);
Wik=double(Wik);
%% 画出配送路线图
plot(axis(2:nodeNum-1,1),axis(2:nodeNum-1,2),'ro');hold on;
plot(axis(1,1),axis(1,2),'pm');hold on;
%在各个节点上标出对应的节点编号
for i=1:nodeNum
    if i~=nodeNum
        text(axis(i,1)-0.1,axis(i,2)+0.5,num2str(i-1));
    else
        text(axis(i,1)-0.1,axis(i,2)-0.5,num2str(i-1));
    end
end
%根据Xijk的值,将对应节点连接
color=hsv(vNum);
for i=1:nodeNum
    for j=1:nodeNum
        for k=1:vNum
            if abs(Xijk(i,j,k)-1)<1e-5
                plot([axis(i,1),axis(j,1)],[axis(i,2),axis(j,2)],'-','color',color(k,:),'linewidth',1);
            end
        end
    end
end
%% 将最终的决策变量Xijk转换为具体的配送方案
VC=cell(vNum,1);                    %配送方案
for k=1:vNum
    [row,col]=find(abs(Xijk(:,:,k)-1)<tol);
    n=numel(row);
    route=zeros(1,n+1);
    route(1)=0;                     %起点为配送中心
    route(end)=0;           %终点为配送中心
    for i=1:n
        if i==1
            next_index=find(row==1);
        else
            next=col(next_index);
            next_index=find(row==next);
            route(i)=next-1;
        end
    end
    VC{k,1}=route;
    disp(['车辆',num2str(k),'的路径如下:']);
    disp(route)
end

在这里插入图片描述在这里插入图片描述

1.版本:matlab2014/2019a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrpVRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### **2.5 ELM预测**和分类 ##### **2.6 KELM预测**和分类 **2.7 ELMAN预测和分类** ##### **2.8 LSTM预测**和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位 ##### 6.2 无线传感器覆盖优化 ##### 6.3 室内定位 ##### 6.4 无线传感器通信及优化 ##### 6.5 无人机通信中继优化
### 使用MATLABCPLEX求解车辆路径问题VRP) #### 1. 安装与配置 为了在MATLAB中使用CPLEX求解VRP问题,需先安装并配置好IBM ILOG CPLEX Optimization Studio。确保已成功设置CPLEXMATLAB之间的接口连接[^1]。 #### 2. 构建模型 定义决策变量、目标函数以及约束条件是解决问题的关键部分。对于VRP而言,主要涉及客户节点间的访问顺序及其对应的运输成本最小化等问题。具体来说: - **决策变量**:通常表示为是否从一个地点前往另一个地点; - **目标函数**:旨在最小化总行驶距离或时间; - **约束条件**:包括每辆车的最大载重量限制、每个顾客仅被服务一次等。 ```matlab % 创建优化模型实例 model = cplex.Cplex(); % 设置求解参数 model.Param.TimeLimit = 300; % 时间上限设为300秒 ``` #### 3. 编写MATLAB代码实现VRP求解过程 以下是利用YALMIP工具箱配合CPLEX求解器的一个简单示例程序片段,展示了如何建立基本的VRP数学模型框架[^3]。 ```matlab % 加载数据集 load('vrpdata.mat'); % 假设有预处理好的数据文件 n = size(C, 1); % 获取城市数量 Q = 80; % 车辆容量设定值 q = randi([5, 20], n, 1); % 各需求点的需求量随机生成 % 初始化yalmip环境 clear sdpvar; intcon = []; f = []; for i=1:n for j=i+1:n x{i,j} = binvar(1); intcon = [intcon, length(f)+1]; f = [f;C(i,j)*x{i,j}]; if i ~= depot && j ~= depot Aeq = sparse([], [], [], n-1, sum(intcon)); beq = q'; % 添加流量守恒方程... end % 更多逻辑判断语句... end end optimize(Aeq*double(x(:)) == beq, f', sdpsettings('solver','cplex')); value(sum(f)) disp(getbase(x)); % 输出最终路线方案矩阵 ``` 这段脚本通过循环遍历所有可能的城市配对组合来创建二元决策向量`x{}`,并通过指定特定的目标表达式形式将其加入到待优化列表当中;同时考虑到了实际业务场景下的一些附加规则(比如流量平衡)。最后调用了`optimize()`方法执行具体的寻优操作,并打印出了最优解所对应的成本开销数值。 #### 4. 结果分析与解释 完成上述步骤之后,即可获得由CPLEX给出的最佳配送路径安排建议。此时可以根据实际情况进一步调整输入参数重新计算直至满意为止。值得注意的是,在面对更复杂的变种版本如带有时间窗口限制等情况时,则还需要额外引入更多维度的信息作为辅助支持[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张叔zhangshu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值