前言
本周主要读了deep lab系列的三篇论文,做一些总结与大家分享。
lab V1
背景:深度卷积神经网络在在图像分类和目标检测等高级视觉任务中表现出最先进的性能。DCNNs的最后一层不足以进行精确分割目标
动机:本文将深度卷积神经网络和CRF相结合,克服了深度网络的局部化特性
使用VGG-16作为骨干网络来提取特征,然后再对像素进行一些细粒度的分类(Fine-grained classification)。
空洞卷积
- 扩大感受野额外参数
- 捕获多尺度上下文信息
- 可以降低计算量,不需要引入额外的参数
ps: 空洞卷积虽然有这么多优点,但在实际中不好优化,速度会大大折扣。
在deep net中为了增加感受野且降低计算量,总要进行降采样(pooling或s2/conv),这样虽然可以增加感受野,但空间分辨率降低了。为了能不丢失分辨率,且仍然扩大感受野,可以使用空洞卷积。这在检测,分割任务中十分有用。一方面感受野大了可以检测分割大目标,另一方面分辨率高了可以精确定位目标。
空洞卷积有一个参数可以设置dilation rate,具体含义就是在卷积核中