原题:1800入门篇P5 —17,18题
步骤:
1.夹逼定理:
略
2.定积分定义:
(1).写成求和形式
(2).因式分解——找分子(
1
n
\frac{1}{n}
n1和
i
n
\frac{i}{n}
ni)
(3).当求和符号后的东西仅有
1
n
\frac{1}{n}
n1和
i
n
\frac{i}{n}
ni组成的时候,结束。
(4).转化
a)极限符号+求和符号——积分符号
b)
1
n
\frac{1}{n}
n1——
d
x
dx
dx
c)其余的——
f
(
x
)
f(x)
f(x)(其中
f
(
x
)
f(x)
f(x)中的变量为
i
n
\frac{i}{n}
ni)
例题:
1.
lim
x
→
∞
(
n
n
2
+
1
+
n
n
2
+
2
+
⋯
+
n
n
2
+
n
)
\lim\limits_{x\to \infty}(\frac{n}{n^2+1}+\frac{n}{n^2+2}+\cdots+\frac{n}{n^2+n})
x→∞lim(n2+1n+n2+2n+⋯+n2+nn)
首先写成求和符号
∑
i
=
1
n
n
n
2
+
i
\sum\limits_{i=1}^{n}\frac{n}{n^2+i}
i=1∑nn2+in
由于变化的i和不变的n的阶数不一样,所以用夹逼定理。
解:略
2.
lim
x
→
∞
(
n
n
2
+
1
2
+
n
n
2
+
2
2
+
⋯
+
n
n
2
+
n
2
)
\lim\limits_{x\to \infty}(\frac{n}{n^2+1^2}+\frac{n}{n^2+2^2}+\cdots+\frac{n}{n^2+n^2})
x→∞lim(n2+12n+n2+22n+⋯+n2+n2n)
首先写成求和符号
∑
i
=
1
n
n
n
2
+
i
2
\sum\limits_{i=1}^{n}\frac{n}{n^2+i^2}
i=1∑nn2+i2n
由于变化的i和不变的n的阶数相同,所以用定积分定义法。
解:
原
式
=
lim
x
→
∞
∑
i
=
1
n
n
n
2
+
i
2
=
lim
x
→
∞
∑
i
=
1
n
n
n
2
[
1
+
(
i
n
)
2
]
=
lim
x
→
∞
∑
i
=
1
n
1
n
[
1
+
(
i
n
)
2
]
(
结
束
)
=
∫
0
1
1
1
+
x
2
d
x
=
π
4
\begin{aligned} 原式&=\lim\limits_{x\to \infty}\sum\limits_{i=1}^{n}\frac{n}{n^2+i^2}\\ &=\lim\limits_{x\to \infty}\sum\limits_{i=1}^{n}\frac{n}{n^2[1+(\frac{i}{n})^2]}\\ &=\lim\limits_{x\to \infty}\sum\limits_{i=1}^{n}\frac{1}{n[1+(\frac{i}{n})^2]}(结束)\\ &=\int_{0}^{1} \frac{1}{1+x^2}dx\\ &=\frac{\pi}{4}\\ \end{aligned}
原式=x→∞limi=1∑nn2+i2n=x→∞limi=1∑nn2[1+(ni)2]n=x→∞limi=1∑nn[1+(ni)2]1(结束)=∫011+x21dx=4π