数列求和再求极限问题

原题:1800入门篇P5 —17,18题
在这里插入图片描述

步骤:

1.夹逼定理:

2.定积分定义:

(1).写成求和形式
(2).因式分解——找分子( 1 n \frac{1}{n} n1 i n \frac{i}{n} ni)
(3).当求和符号后的东西仅有 1 n \frac{1}{n} n1 i n \frac{i}{n} ni组成的时候,结束。
(4).转化
a)极限符号+求和符号——积分符号
b) 1 n \frac{1}{n} n1—— d x dx dx
c)其余的—— f ( x ) f(x) f(x)(其中 f ( x ) f(x) f(x)中的变量为 i n \frac{i}{n} ni

例题:

1. lim ⁡ x → ∞ ( n n 2 + 1 + n n 2 + 2 + ⋯ + n n 2 + n ) \lim\limits_{x\to \infty}(\frac{n}{n^2+1}+\frac{n}{n^2+2}+\cdots+\frac{n}{n^2+n}) xlim(n2+1n+n2+2n++n2+nn)
首先写成求和符号 ∑ i = 1 n n n 2 + i \sum\limits_{i=1}^{n}\frac{n}{n^2+i} i=1nn2+in
由于变化的i和不变的n的阶数不一样,所以用夹逼定理。

解:略


2. lim ⁡ x → ∞ ( n n 2 + 1 2 + n n 2 + 2 2 + ⋯ + n n 2 + n 2 ) \lim\limits_{x\to \infty}(\frac{n}{n^2+1^2}+\frac{n}{n^2+2^2}+\cdots+\frac{n}{n^2+n^2}) xlim(n2+12n+n2+22n++n2+n2n)
首先写成求和符号 ∑ i = 1 n n n 2 + i 2 \sum\limits_{i=1}^{n}\frac{n}{n^2+i^2} i=1nn2+i2n
由于变化的i和不变的n的阶数相同,所以用定积分定义法。

解:
原 式 = lim ⁡ x → ∞ ∑ i = 1 n n n 2 + i 2 = lim ⁡ x → ∞ ∑ i = 1 n n n 2 [ 1 + ( i n ) 2 ] = lim ⁡ x → ∞ ∑ i = 1 n 1 n [ 1 + ( i n ) 2 ] ( 结 束 ) = ∫ 0 1 1 1 + x 2 d x = π 4 \begin{aligned} 原式&=\lim\limits_{x\to \infty}\sum\limits_{i=1}^{n}\frac{n}{n^2+i^2}\\ &=\lim\limits_{x\to \infty}\sum\limits_{i=1}^{n}\frac{n}{n^2[1+(\frac{i}{n})^2]}\\ &=\lim\limits_{x\to \infty}\sum\limits_{i=1}^{n}\frac{1}{n[1+(\frac{i}{n})^2]}(结束)\\ &=\int_{0}^{1} \frac{1}{1+x^2}dx\\ &=\frac{\pi}{4}\\ \end{aligned} =xlimi=1nn2+i2n=xlimi=1nn2[1+(ni)2]n=xlimi=1nn[1+(ni)2]1()=011+x21dx=4π

组合数乘等比数列求和是指在等比数列的每一项前面乘以一个对应的组合数然后求和。引用的内容提供了一些关于等比数列求和组合数的相关知识。 首先,我们来看等比数列求和公式。根据引用[1]中提供的内容,等比数列的递推公式为an=an-1d,其中an表示第n项,d表示公比。根据数列的定义,可以得到an=sn-sn-1,其中sn表示前n项。这个公式在推导排序不等式时非常有用。 接下来,我们来看组合数的乘法性质。引用中提到,相邻项的性质可以表示为an=an-1an+1/2,其中an表示第n项。这个性质在组合数乘等比数列求和中非常重要。 现在我们来解答问题组合数乘等比数列求和。假设等比数列的首项为a,公比为r,共有n项。那么乘以组合数的等比数列求和可以表示为: S = C(0,0) * a + C(1,1) * ar + C(2,2) * ar^2 + ... + C(n,n) * ar^n 其中C(m,k)表示从m个元素中选取k个元素的组合数。根据组合数的定义,C(m,k)可以表示为m!/(k!(m-k)!),其中!表示阶乘运算。 然后,我们可以将S进行展开重组。根据引用中提到的展开重组法计算求和式,展开后的求和式可以表示为: S = C(0,0) * a + (C(1,0) + C(1,1)) * ar + (C(2,0) + C(2,1) + C(2,2)) * ar^2 + ... + (C(n-1,0) + C(n-1,1) + ... + C(n-1,n-1)) * ar^(n-1) + C(n,n) * ar^n 注意到组合数的性质C(m,k) + C(m,k+1) = C(m+1,k+1),我们可以简化求和式为: S = C(0,0) * a + C(1,1) * (ar + ar^2) + C(2,2) * (ar^2 + ar^3) + ... + C(n-1,n-1) * (ar^(n-1) + ar^n) + C(n,n) * ar^n 综上所述,组合数乘等比数列求和可以表示为上述的求和式。这个求和式可以通过计算每一项的组合数等比数列的乘积,并将所有项相加得到最终的结果。 引用: math_等比数列求和推导&等幂差推导/两个n次方数之差等差数列🎈ref递推公式通项等差数列 等比数列🎈递推公式通项公式等比数列求和公式🎈错位相减法 等差乘以等比数列求和问题导&极限法例: 求和号的性质 ∑ \sum ∑🎈展开重组法计算求和式 立方数/差的展开两个n次方数之差&两个奇数次方数之 等幂差公式推导🎈ref 等幂差的综合应用(等价无穷小实例) 相邻项的性质 a_n = \frac{a_{n-1} a_{n+1}}{2}; n = 2, 3, ... 等差数列
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值