非线性系统线性化
李雅普诺夫线性化方法是关于非线性系统局部稳定的命题。它将“一个非线性系统与其线性逼近在一个小运动区域内应当有相似行为”的这种直觉严格化了。由于一切物理系统本质都是非线性的,李雅普诺夫线性化方法在实践中成为利用线性控制技术的基本依据,即指出用线性控制进行稳定设计可以保证原来的物理系统的局部稳定性。
考查非线性自治系统
x
˙
=
f
(
x
)
\dot{\boldsymbol{x}}=\boldsymbol{f}(\boldsymbol{x})
x˙=f(x)并假定
f
(
x
)
\boldsymbol{f}(x)
f(x)连续可微分,那么系统动力学模型可写为
x
˙
=
(
∂
f
∂
x
)
x
=
0
x
+
f
h
,
o
,
t
(
x
)
(3.11)
\dot{ \boldsymbol{x} }= { \bigg( \frac{\partial \boldsymbol{f} }{\partial \boldsymbol {x} } \bigg) }_{\boldsymbol {x}=0} \boldsymbol {x}+ {\boldsymbol {f} }_{h,o,t} ( \boldsymbol {x} ) \tag{3.11}
x˙=(∂x∂f)x=0x+fh,o,t(x)(3.11)
其中,
f
h
,
o
,
t
{\boldsymbol {f} }_{h,o,t}
fh,o,t表示
x
x
x的高阶项。注意,以上的泰勒展开式由一阶项开始。这是因为$\boldsymbol {0}
是一个平衡点,故
是一个平衡点,故
是一个平衡点,故\boldsymbol {f}( \boldsymbol {0} )=\boldsymbol {0}
。常矩阵
。常矩阵
。常矩阵\boldsymbol {A}
为
为
为\boldsymbol {f}
对
对
对\boldsymbol {x}
在
在
在\boldsymbol {x}=\boldsymbol {0}
处的雅可比矩阵。(即以
处的雅可比矩阵。(即以
处的雅可比矩阵。(即以\partial f_i /\partial x_j
为元素的
为元素的
为元素的 n$ X $n $矩阵)
A
=
(
∂
f
∂
x
)
x
=
0
\boldsymbol{A} ={ \bigg( \frac{\partial \boldsymbol{f} }{\partial \boldsymbol {x} } \bigg) }_{\boldsymbol {x}=0}
A=(∂x∂f)x=0
那么,系统
x
˙
=
A
x
(3.12)
\dot{ \boldsymbol{x} }= \boldsymbol{A} \boldsymbol{x} \tag{3.12}
x˙=Ax(3.12)
称为原来的非线性系统在平衡点
0
\boldsymbol{0}
0的线性化(或线性逼近)。
类似地,对一个带有控制输入
u
\boldsymbol{u}
u的非自治非线性系统
x
˙
=
f
(
x
,
u
)
\dot{\boldsymbol{x}}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u} )
x˙=f(x,u)
且
f
(
0
,
0
)
=
0
\boldsymbol{f}(\boldsymbol{0}, \boldsymbol{0} )= \boldsymbol{0}
f(0,0)=0,我们有
x
˙
=
(
∂
f
∂
x
)
(
x
=
0
,
u
=
0
)
x
+
(
∂
f
∂
u
)
(
x
=
0
,
u
=
0
)
u
+
f
h
,
o
,
t
(
x
,
u
)
\dot{ \boldsymbol{x} }= { \bigg( \frac{\partial \boldsymbol{f} }{\partial \boldsymbol{x} } \bigg) }_{ (\boldsymbol {x}=\boldsymbol{0},\boldsymbol{u}=\boldsymbol{0} )} \boldsymbol {x} + { \bigg( \frac{\partial \boldsymbol{f} }{\partial \boldsymbol{u} } \bigg) }_{(\boldsymbol{x}=\boldsymbol{0},\boldsymbol{u}=\boldsymbol{0} )} \boldsymbol{u} + {\boldsymbol {f} }_{h,o,t} ( \boldsymbol {x},\boldsymbol {u} )
x˙=(∂x∂f)(x=0,u=0)x+(∂u∂f)(x=0,u=0)u+fh,o,t(x,u)
其中,
f
h
,
o
,
t
{\boldsymbol {f} }_{h,o,t}
fh,o,t表示
x
x
x及
u
\boldsymbol{u}
u的高阶项,记
A
\boldsymbol {A}
A为
f
\boldsymbol {f}
f在
(
x
=
0
,
u
=
0
)
(\boldsymbol{x}=\boldsymbol{0},\boldsymbol{u}=\boldsymbol{0})
(x=0,u=0)处对
x
\boldsymbol {x}
x的雅可比矩阵,
B
\boldsymbol {B}
B为
f
\boldsymbol {f}
f在
(
x
=
0
,
u
=
0
)
(\boldsymbol{x}=\boldsymbol{0},\boldsymbol{u}=\boldsymbol{0})
(x=0,u=0)处对
u
\boldsymbol {u}
u的雅可比矩阵(即以$\partial f_i /\partial u_j
为元素的
为元素的
为元素的 n$ X $m
矩阵,这里
矩阵,这里
矩阵,这里m$为输入个数)
A
=
(
∂
f
∂
x
)
(
x
=
0
,
u
=
0
)
B
=
(
∂
f
∂
u
)
(
x
=
0
,
u
=
0
)
\boldsymbol{A} ={ \bigg( \frac{\partial \boldsymbol{f} }{\partial \boldsymbol {x} } \bigg) }_{ (\boldsymbol {x}=\boldsymbol{0},\boldsymbol{u}=\boldsymbol{0} )} \qquad \boldsymbol{B} ={ \bigg( \frac{\partial \boldsymbol{f} }{\partial \boldsymbol {u} } \bigg) }_{ (\boldsymbol {x}=\boldsymbol{0},\boldsymbol{u}=\boldsymbol{0} )}
A=(∂x∂f)(x=0,u=0)B=(∂u∂f)(x=0,u=0)
系统
x
˙
=
A
x
+
B
u
\dot{ \boldsymbol{x} }= \boldsymbol{A} \boldsymbol{x} + \boldsymbol{B} \boldsymbol{u}
x˙=Ax+Bu
是原非线性系统在
(
x
=
0
,
u
=
0
)
{ (\boldsymbol{x}=\boldsymbol{0},\boldsymbol{u}=\boldsymbol{0} )}
(x=0,u=0)处的线性化(或线性逼近)。
而而且,选择一个控制律
u
=
u
(
x
)
(
u
(
0
)
=
0
)
\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{x})( \boldsymbol{u}(\boldsymbol{0})=\boldsymbol{0} )
u=u(x)(u(0)=0)就会将原来的非自治系统变为以
x
=
0
\boldsymbol{x}=\boldsymbol{0}
x=0为其一个平衡点的自治闭环系统。控制律的线性逼近为
u
≈
(
d
f
d
x
)
x
=
0
x
=
G
x
\boldsymbol{u} \approx { \bigg( \frac{d \boldsymbol{f} }{d \boldsymbol {x} } \bigg) }_{\boldsymbol {x}=0} \boldsymbol {x} = \boldsymbol{Gx}
u≈(dxdf)x=0x=Gx
闭环动力系统被线性化为
x
˙
=
f
(
x
,
u
(
x
)
)
≈
(
A
+
B
G
)
x
\dot{ \boldsymbol{x} }= \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}(\boldsymbol{x}) ) \approx (\boldsymbol{A} +\boldsymbol{BG} ) \boldsymbol{x}
x˙=f(x,u(x))≈(A+BG)x
当然,如果直接考虑闭环自治系统
x
˙
=
f
(
x
,
u
(
x
)
)
=
f
1
(
x
)
\dot{ \boldsymbol{x} }= \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}(\boldsymbol{x}) ) ={\boldsymbol{f}}_1 (\boldsymbol{x})
x˙=f(x,u(x))=f1(x)
并在平衡点
x
=
0
\boldsymbol{x}=\boldsymbol{0}
x=0将
f
1
{\boldsymbol{f}}_1
f1对
x
\boldsymbol{x}
x作线性化,结果是一样的。
在实际中找到-一个系统的线性化系统的最简单方法是忽略动态系统中阶数高于1的项。
定理3.1(李雅普诺夫线性化方法)
-
如果线性化系统是严格稳定的(即A的特征值在复平面的左半开平面内),那么非线性系统的平衡点是渐近稳定的。
-
如果线性化系统是不稳定的(即至少有一个A的特征值在右半开平面内),那么非线性系统的平衡点是不稳定的。
-
如果线性系统是临界稳定的(即A的所有特征值均在左半闭平面,且至少有一个在虚轴上)那么由线性化系统得不到原系统的任何信息(即非线性系统的平衡点可能是稳定的、渐近稳定的或不稳定的)。
不给出这个定理证明的细节(它实际上是基于李雅普诺夫直接方法),但想说明这个结论是直观的。概言之,定理的正确性来自连续性。如果线性化系统是严格稳定或严格不稳定的,那么在离平衡点不远处逼近是有效的。因此,非线性系统也是稳定或不稳定的。但如果线性化系统处于临界状态,那么(3.11)中的高阶项将对非线性系统的稳定或不稳定起决定性作用。
参考:应用非线性控制 (Jean-Jacques E.Slotine Weiping Li著 程代展 等译)