k-means++算法分类UCI-HAR数据集

作业让对UCI-HAR数据集进行分类

数据集介绍

        通过智能手机上的传感器收集的运动数据,记录了30名志愿者执行6种不同活动时的动作。每个样本记录了多个时间序列特征,旨在对人类活动进行分类。

  • WALKING: 行走
  • WALKING_UPSTAIRS: 上楼
  • WALKING_DOWNSTAIRS: 下楼
  • SITTING: 坐
  • STANDING: 站
  • LAYING: 躺

K-means++算法简介

        k-means++是k-means聚类算法的一种改进版本,旨在通过优化初始簇心选择来提高聚类性能。k-means++ 算法的核心思想是:通过增加距离来选择初始簇心,从而避免 k-means 传统方法可能出现的局部最优问题。

        虽然现在sklearn库函数直接就能调用k-means++,

from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=6, init='k-means++', random_state=42)

        但是从原理来复现也可以

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import  confusion_matrix, Co
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gatinaa

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值