作业让对UCI-HAR数据集进行分类
数据集介绍
通过智能手机上的传感器收集的运动数据,记录了30名志愿者执行6种不同活动时的动作。每个样本记录了多个时间序列特征,旨在对人类活动进行分类。
- WALKING: 行走
- WALKING_UPSTAIRS: 上楼
- WALKING_DOWNSTAIRS: 下楼
- SITTING: 坐
- STANDING: 站
- LAYING: 躺
K-means++算法简介
k-means++是k-means聚类算法的一种改进版本,旨在通过优化初始簇心选择来提高聚类性能。k-means++ 算法的核心思想是:通过增加距离来选择初始簇心,从而避免 k-means 传统方法可能出现的局部最优问题。
虽然现在sklearn库函数直接就能调用k-means++,
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=6, init='k-means++', random_state=42)
但是从原理来复现也可以
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, Co