深度学习2.0-22.Keras高层接口之自定义层或网络

本文介绍了Keras的Sequential模型,深入探讨了Layer和Model的概念,展示了如何自定义深度学习层及网络。通过手写数字识别的实战,详细讲解了自定义网络的实现过程。
摘要由CSDN通过智能技术生成


在这里插入图片描述

1.keras.Sequential

在这里插入图片描述
在这里插入图片描述

2.Layer/Model

在这里插入图片描述

3.自定义层

# 自定义Dense层
class MyDense(layers.Layer):
	# 初始化方法
	def __init__(self,inp_dim,outp_dim):
		# 调用母类的初始化
		super(MyDense,self).__init__()
		# self.add_variable作用是在创建这两个Variable时,同时告诉类这两个variable是需要创建的
		# 当两个容器拼接时,会把这两个variable交给上面的容器来管理,统一管理,不需要人为管理参数
		# 这个函数在母类中实现,所以可以直接调用
		self.kernel = self.add_variable('w',[inp_dim,outp_dim])
		self.bias = self.add_variable('b',[outp_dim])
	
	def call(self,inputs,training = None):
		out = inputs @	self.kernel + self.bias
		return out

4.自定义网络

# 利用自定义层,创建自定义网络(5层)
class MyModel(keras.Model):
	def __init__(self):
		super(MyModel,self).__init__()
		self.fc1 = MyDense(28*28,256)
		self.fc2 = MyDense(256,128)
		self.fc3 = MyDense(128,64)
		self.fc4 = MyDense(64,32)
		self.fc5 =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值