missingno库—缺失值可视化

本文介绍了在处理大规模数据时,如何利用missingno库快速有效地进行缺失值检查。通过matrix、heatmap和dendrogram等方法,可以直观地分析数据集的缺失情况,帮助数据科学家更好地理解数据质量并进行预处理。代码示例展示了如何读取大文件,转换数据类型以减小内存占用,并使用missingno进行可视化。

文章目录

引言

当你碰到几个G甚至更大的数据时,如何查看结构化数据的缺失情况呢?总不能用excel表手动肉眼可视化吧?此时,就用到了missingno库
missingno库功能非常强大了!!!
下面展示missingno库的简单实用

代码

数据集提取码:1234

# 这个数据有6.19G
import missingno as mg
import pandas as pd
import numpy as np

try:
    # 加载数据特别快
    dtrain = pd.read_parquet('dtrain.parquet'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值