三种 绘制奈奎斯特曲线 的方法

①解析法绘制

以开环传递函数
G ( s ) H ( s ) = 1 s + 2 G\left( s \right) H\left( s \right) =\frac{1}{s+2} G(s)H(s)=s+21为例

令s=jw

得到开环系统的频率特性 G ( j w ) H ( j w ) = 1 j w + 2 G\left( jw \right) H\left( jw \right) =\frac{1}{jw+2} G(jw)H(jw)=jw+21将实部和虚部分开化为: 2 4 + w 2 − w 4 + w 2 j \frac{2}{4+w^2}-\frac{w}{4+w^2}j 4+w224+w2wj

这是一个复变函数,令w在(0,+∞)上增大,在复数域中列表、描点、连线即可得到对应的Nyquist曲线:

在这里插入图片描述
(解析法虽精确,但过于繁琐,不适用于实践)

箭头方向即为w增大的方向,因为Nyquist曲线关于实轴对称,所以一般只绘制w从 0 变化至 +∞ 的Nyquist曲线

概略图法绘制

G ( s ) H ( s ) = 1 s ( s + 1 ) ( s + 3 ) G\left( s \right) H\left( s \right) =\frac{1}{s\left( s+1 \right) \left( s+3 \right)} G(s)H(s)=s(s+1)(s+3)1为例,以下分为五个步骤

  1. 将开环传递函数进行典型环节分解,并令s=jw,得:
    G ( j w ) H ( j w ) = 1 3 ⋅ 1 j w ( j w + 1 ) ( 1 3 j w + 1 ) G\left( jw \right) H\left( jw \right) =\frac{1}{3}\cdot \frac{1}{jw\left( jw+1 \right) \left( \frac{1}{3}jw+1 \right)} G(jw)H(jw)=31jw(jw+1)(31jw+1)1
  2. w=0+起点的幅值和相位
    G ( j w ) H ( j w ) = A ( w ) e j φ ( w ) G\left( jw \right) H\left( jw \right) =A\left( w \right) e^{j\varphi \left( w \right)} G(jw)H(jw)=A(w)ejφ(w)我们可以知道,复变函数相乘,其幅值相乘,相角相叠加

当w=0+: G ( j w ) H ( j w ) = 1 3 ⋅ 1 j w ∣ w = 0 + G\left( jw \right) H\left( jw \right) =\frac{1}{3}\cdot \frac{1}{jw}\mid_{w=0+}^{} G(jw)H(jw)=31jw1w=0+ A ( w ) = ∞ A\left( w \right) =\infty A(w)= φ ( w ) = 0 ° − 90 ° = − 90 ° \varphi \left( w \right) =0°-90°=-90° φ(w)=0°90°=90°可得,起点在第三象限虚轴左侧的位置

为什么这里不是右侧呢?
因为在原频率特性中还有(jw+1)这样的项,在w=0+时,有一个很小的正角度,使得最后的φ(w)的绝对值实际上大于90°

  1. w=+∞终点的幅值和相位

    当w=+∞: G ( j w ) H ( j w ) = 1 3 ⋅ 1 j w ( j w + 1 ) ( 1 3 j w + 1 ) ∣ w = + ∞ G\left( jw \right) H\left( jw \right) =\frac{1}{3}\cdot \frac{1}{jw\left( jw+1 \right) \left( \frac{1}{3}jw+1 \right)}\mid_{w=+\infty}^{} G(jw)H(jw)=31jw(jw+1)(31jw+1)1w=+ A ( w ) = 0 A\left( w \right) =0 A(w)=0 φ ( w ) = 0 ° + ( 0 ° − ( 90 ° + 90 ° + 90 ° ) ) = − 270 ° \varphi \left( w \right) =0°+\left( 0°-\left( 90°+90°+90° \right) \right) =-270° φ(w)=0°+(0°(90°+90°+90°))=270°可得,终点在第二象限靠近原点的位置

为什么这里不是右侧呢?
因为在原频率特性中还有(jw+1)这样的项,在w=0+时,有一个很小的正角度,使得最后的φ(w)的绝对值实际上大于90°

  1. 求曲线与虚轴的交点
    令频率特性中实部为0,求出自变量频率w的值,再代入到频率特性的虚部中,即可求得与虚轴交点
  2. 求曲线与实轴的交点
    令频率特性中虚部为0,求出自变量频率w的值,再代入到频率特性的实部中,即可求得与实轴交点

但在本例中可以省略步骤4、5
jw、(jw+1)、(1/3jw+1),三者对应的相角范围为:90°、(0,90°)、(0,90°),所以φ(w) ϵ (−90°,−270°),所以Nyquist曲线只在二、三象限,其与虚轴没有交点,与实轴的交点在负半轴。(概略图只需交点的大致位置即可)

  1. 画出大致图形
    在这里插入图片描述

③MATLAB绘制

利用MATALB中nyquist函数绘制

以开环传递函数G(s)H(s)=
1 2 s 2 + 5 s + 2 \frac{1}{2s^2+5s+2} 2s2+5s+21
为例
运行如下程序得到其nyquist曲线

num=1;
den=[2 5 2];
G1=tf(num,den);
nyquist(G1);

运行结果:

nyquist函数 默认的是绘制w在负无穷到正无穷的图像,若只要绘制w在0+到正无穷的图像 可参考以下代码

num=1;
den=[2 5 2];
G1=tf(num,den);
[Re,Im]=nyquist(G1);
X = squeeze(Re);
Y = squeeze(Im);
plot(X,Y);
xlim([-10,0]);

运行结果:
在这里插入图片描述

### 关于面包板电源模块 MB102 的 USB 供电规格及兼容性 #### 1. **MB102 基本功能** 面包板电源模块 MB102 是一种常见的实验工具,主要用于为基于面包板的小型电子项目提供稳定的电压输出。它通常具有两路独立的稳压输出:一路为 5V 和另一路可调电压(一般范围为 3V 至 12V)。这种设计使得它可以满足多种芯片和传感器的不同工作电压需求。 #### 2. **USB 供电方式** MB102 支持通过 USB 接口供电,输入电压通常是标准的 5V DC[^1]。由于其内部集成了 LM7805 稳压器以及可调节电位器控制的直流-直流变换电路,因此即使输入来自电脑或其他低功率 USB 设备,也能稳定地向负载供应电力。不过需要注意的是,如果项目的功耗较高,则可能超出某些 USB 端口的最大电流能力(一般是 500mA),从而引起不稳定现象或者保护机制启动断开连接的情况发生。 #### 3. **兼容性分析** 该型号广泛适用于各种微控制器单元 (MCU),特别是那些像 Wemos D1 R32 这样可以通过杜邦线轻松接入并共享相同逻辑级别的系统[^2]。另外,在提到 Arduino Uno 板时也表明了良好的互操作性,因为两者均采用相似的标准接口定义与电气特性参数设置[^4]: - 对于需要 3.3V 工作环境下的组件来说,只需调整好对应跳线帽位置即可实现精准匹配; - 当涉及到更多外围扩展应用场合下,例如带有多重模拟信号采集任务的情形里,利用 MB102 提供干净无干扰的基础能源供给就显得尤为重要了[^3]。 综上所述,对于打算构建以单片机为核心的原型验证平台而言,选用具备良好声誉记录且易于获取配件支持服务链路上下游资源丰富的品牌产品——如这里讨论过的这款特定类型的配电装置不失为明智之举之一。 ```python # 示例 Python 代码展示如何检测硬件状态 import machine pin = machine.Pin(2, machine.Pin.IN) if pin.value() == 1: print("Power supply is stable.") else: print("Check your connections and power source.") ```
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值