📖标题:DeepSeek-Prover-V1.5: Harnessing Proof Assistant Feedback for Reinforcement Learning and Monte-Carlo Tree Search
🌐来源:arXiv, 2408.08152
摘要
我们介绍了DeepSeek-Prover-V1.5,这是一个开源的语言模型,专门为Lean 4中的定理证明而设计,通过优化训练和推理过程来增强DeepSeek-Prover-V1。该模型在DeepSeekMath-Base上进行了预训练,专门针对正式数学语言进行了优化,然后使用从DeepSeek-Prover-V1衍生的增强形式定理证明数据集进行监督微调。通过证明助手反馈的强化学习(RLPAF),进一步对模型进行了优化。除了DeepSeek-Prover-V1的单遍完整证明生成方法,我们提出了RMaxTS,这是一种蒙特卡罗树搜索的变体,采用内在奖励驱动的探索策略来生成多样的证明路径。DeepSeek-Prover-V1.5比DeepSeek-Prover-V1有了显著的提升,在高中水平的miniF2F基准测试的测试集上实现了新的最先进结果(63.5%),并在本科水平的ProofNet基准测试中取得了25.3%的成绩。
🛎️文章简介
🔸研究问题:如何提高大语言模型