DeepSeek:LLM通过反馈做强化学习和树搜索

在这里插入图片描述

📖标题:DeepSeek-Prover-V1.5: Harnessing Proof Assistant Feedback for Reinforcement Learning and Monte-Carlo Tree Search
🌐来源:arXiv, 2408.08152

摘要

我们介绍了DeepSeek-Prover-V1.5,这是一个开源的语言模型,专门为Lean 4中的定理证明而设计,通过优化训练和推理过程来增强DeepSeek-Prover-V1。该模型在DeepSeekMath-Base上进行了预训练,专门针对正式数学语言进行了优化,然后使用从DeepSeek-Prover-V1衍生的增强形式定理证明数据集进行监督微调。通过证明助手反馈的强化学习(RLPAF),进一步对模型进行了优化。除了DeepSeek-Prover-V1的单遍完整证明生成方法,我们提出了RMaxTS,这是一种蒙特卡罗树搜索的变体,采用内在奖励驱动的探索策略来生成多样的证明路径。DeepSeek-Prover-V1.5比DeepSeek-Prover-V1有了显著的提升,在高中水平的miniF2F基准测试的测试集上实现了新的最先进结果(63.5%),并在本科水平的ProofNet基准测试中取得了25.3%的成绩。

🛎️文章简介

🔸研究问题:如何提高大语言模型࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值