NTU:通过选择器整合多种LLM表格问答方案

在这里插入图片描述

📖标题:SYNTQA: Synergistic Table-based Question Answering via Mixture of Text-to-SQL and E2E TQA
🌐来源:arXiv, 2409.16682

摘要

🔸Text-to-SQL解析和端到端问答(E2E TQA)是基于表的问答任务的两种主要方法。尽管在多个基准上取得了成功,但它们尚未进行比较,其协同作用仍未得到探索。
🔸在本文中,我们通过在基准数据集上评估最先进的模型来识别不同的优缺点:Text-to-SQL在处理涉及算术运算和长表的问题方面具有优势;E2E TQA擅长解决模棱两可的问题、非标准的表模式和复杂的表内容。
🔸为了结合这两种优势,我们提出了一种基于协同表的问答方法,该方法通过答案选择集成不同的模型,对任何模型类型都是不可知的。进一步的实验证实,通过基于特征或基于LLM的答案选择器对模型进行集成,可以显著提高单个模型的性能。代码将公开在https://github.com/siyue-zhang/SynTableQA

🛎️文章简介

🔸研究问题:如何通过协同使用Text-to-SQL和端到端表格问答(E2E TQA)方法来提高表格问答的准确性和鲁棒性?
🔸主要贡献:论文提出了一种名为SYNTQA的混合方法,混合使用Text-to-SQL和E2E,并结合选择器来选择最终答案。

📝重点思路

🔺相关工作

🔸TQA任务:给定一个问题和一个表格,根据表格中的证据找到答案,常用方法包括语义解析和端到端系统。
🔸语义解析:通过Text-to-SQL预测SQL查询作为问题的中间语义表示,然后执行SQL来查找答案,更擅长数值推理和长表格处理。
🔸端到端系统:直接从表语料库上用预先训练的模型生成答案,模仿人类对问题和表的推理,更擅长模糊问题和复杂模式。

🔺论文方案

🔸技术评估:评估当前SOTA的Text-to-SQL(如T5、DIN-SQL)和E2E TQA模型(如TAPEX、OmniTab、GPT)在基准数据集WTQ和WIKISQL上的表现。
🔸SYNTQA方法:结合了Text-to-SQL和E2E TQA模型的候选答案,并使用选择器来选择最终答案。
🔸选择原理:使用随机森林分类器(RF)来选择最合适的方法来处理给定的问题和表格,还设计了多种特征来训练这个分类器,包括问题特征(如问题词和长度)和表格特征。此外,还引入了自一致性机制,通过生成多个候选答案并进行投票来选择最终答案,以提高系统的鲁棒性。

🔎分析总结

🔸E2E TQA在处理模糊问题和非标准表格模式时表现稳健,更侧重于表格内容而非表格模式。
🔸Text-to-SQL在数值推理和长表格时表现更好,而E2E TQA在处理复杂内容和混合数据类型的表格时更具灵活性。
🔸SYNTQA方法通过集成两者优势,显著提高了问答系统的性能,特别是在复杂问题和表格上,选择器的成功率至关重要。
🔸SYNTQA在对抗性扰动下的表现优于单独的方案,表明其具有更好的鲁棒性。

💡个人观点

论文的核心是模型融合思想,通过选择器选择答案,但光靠任务特征分类靠谱吗?

附录

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值