Meta:通过自我批评增强LLM的奖励建模

在这里插入图片描述

📖标题:Self-Generated Critiques Boost Reward Modeling for Language Models
🌐来源:arXiv, 2411.16646

🌟摘要

🔸奖励建模对于将大型语言模型(LLM)与人类偏好相匹配至关重要,特别是在从人类反馈中强化学习(RLHF)方面。然而,目前的奖励模型主要产生无法解释的标量分数,并且很难将批评纳入自然语言格式。
🔸我们假设,同时生成评论和标量奖励将提高奖励模型在偏好排名方面的能力。受此启发,我们提出了Critic RM,这是一个利用自我生成的高质量评论来训练基于标量奖励的偏好预测的奖励模型的框架,其中明确的理由作为支持证据。Critic RM采用两阶段过程:生成和过滤高质量的评论,然后对奖励预测和评论生成目标进行联合微调。
🔸在包括RewardBench和CrossEval在内的偏好排名基准上的实验表明,与标准奖励模型和LLM法官相比,Critic RM将奖励建模准确率提高了3.7%-7.3%,表现出了强大的性能和数据效率。其他研究进一步验证了生成的批评在纠正有缺陷的推理步骤方面的有效性,在提高推理准确性方面提高了2.5%-3.2%。

🛎️文章简介

🔸研究问题:现有奖

### 关于 Guardian 运行时框架的文档与实现细节 Guardian 是一种运行时框架,旨在支持基于大语言模型 (LLM) 的用户界面探索。其核心目标是利用 LLM 技术来增强用户体验并简化复杂系统的交互过程[^1]。 #### 主要特性 该框架的主要特点包括以下几个方面: - **动态上下文感知**:Guardian 能够实时分析用户的输入以及当前的应用状态,并据此调整响应行为。 - **自适应学习能力**:通过持续收集用户反馈数据,Guardian 不断优化自身的预测能力和推荐策略。 - **模块化设计架构**:整个系统被划分为多个独立组件,便于开发者针对具体需求定制扩展功能。 以下是构建这样一个框架可能涉及的关键技术要点: #### 数据流处理机制 为了有效管理和传递信息,在内部实现了高效的数据管道解决方案。此部分负责接收来自前端的各种事件触发信号,并将其转化为适合传送给后端 AI 模型的形式。 ```python def process_event(event_data): """ 处理接收到的UI事件数据 参数: event_data(dict): 包含事件详情的信息字典 返回值: processed_result(str): 经过初步解析后的字符串表示形式的结果 """ try: # 对原始数据做必要的清理工作 cleaned_info = clean_input(event_data) # 将清洗过的资料转换成可供后续使用的标准格式 formatted_message = format_for_model(cleaned_info) return formatted_message except Exception as e: log_error(e) ``` #### 权限管理集成 如果计划在一个完整的 Web 应用环境中部署,则还需要考虑安全性因素。此时可以借助 `django-rest-framework-guardian` 提供的支持,无缝衔接既有业务逻辑的同时保障敏感操作的安全性[^2]。 例如定义某些特定视图只允许拥有相应对象级别权限的角色访问: ```python from rest_framework import permissions, viewsets import guardian.shortcuts class SpecialResourceViewSet(viewsets.ModelViewSet): permission_classes = [permissions.DjangoObjectPermissions] def get_queryset(self): user = self.request.user queryset = super().get_queryset() accessible_items = guardian.shortcuts.get_objects_for_user( user, 'app_name.view_specialresource', klass=queryset.model ) return queryset.filter(id__in=[item.id for item in accessible_items]) ``` 以上代码片段展示了如何结合 DRF 和 django-guardian 实现更精细的访问控制规则设定方法。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值