华师大:LLM数学推理错误分析

在这里插入图片描述

📖标题:Error Classification of Large Language Models on Math Word Problems: A Dynamically Adaptive Framework
🌐来源:arXiv, 2501.15581

🌟摘要

🔸大型语言模型(LLM)在各个领域都表现出了非凡的能力。数学应用题(MWP)是评估LLMs推理能力的重要基准。虽然大多数研究主要侧重于提高准确性,但它往往忽视了理解和解决潜在的错误模式。当前的错误分类方法依赖于静态和预定义的类别,这限制了它们在数学推理中捕获全部错误模式的能力。
🔸为了进行系统误差分析,我们使用多种采样策略从四个不同的MWP数据集中的15个不同大小的LLM中收集误差样本。基于这一广泛的收集,我们介绍了MWPES-300K,这是一个包含304865个错误样本的综合数据集,涵盖了不同的错误模式和推理路径。为了减少人为偏见并实现对错误模式的细粒度分析,我们提出了一种新的数学推理中的自动动态错误分类框架。
🔸实验结果表明,数据集特征显著地塑造了误差模式,随着模型能力的提高,误差模式从基本表现演变为复杂表现。随着对错误模式的深入了解,我们提出了错误感知提示,该提示将常见的错误模式作为明确的指导,从而显著提高了数学推理性能。

🛎️文章简介

🔸研究问题:大语言模型(LLM)在解决数学应用题(MWP)时会产生各种错误类型,并提出一种动态适应的框架来改进模型的数学推理能力。
🔸主要贡献:论文提出了一个动态适应的错误分类框架,并构建了一个包含304,865个错误样本的大规模数据集MWPES-300K,显著提升了LLM在数学推理任务中的表现。

📝重点思路

🔸数据生成与过滤:通过15个LLM生成10个不同的解决方案,并与标准答案对比,筛选出错误样本。使用自动化检查器(如GPT-4o)验证解决方案的逻辑有效性,过滤掉格式偏差但逻辑正确的样本。
🔸动态错误分类框架:提出了一种动态适应的错误分类框架,能够根据观察到的模型输出自动更新错误类别,避免了静态分类的局限性。
🔸错误感知提示机制:开发了一种错误感知提示机制,通过检索与问题相关的错误摘要并附加到原始提示中,指导模型避免潜在错误。
🔸实验验证:在多个数据集(如MATH和TAL-SCQ5K)上进行了实验,验证了错误感知提示机制的有效性,并分析了不同模型在不同数据集上的表现。

🔎分析总结

🔸数据集复杂度与错误多样性正相关:随着数据集复杂度的增加,LLM产生的错误类型也变得更加多样化。
🔸模型参数规模与错误减少相关:随着模型参数规模的增加,总体错误率下降,错误分布更加均衡。
🔸错误感知提示机制显著提升性能:错误感知提示机制在多个数据集上显著提升了LLM的准确率,特别是在MATH数据集上,某些模型的性能提升了超过25%。
🔸模型在错误分类任务中的不一致性:LLM在直接分类错误任务中表现不一致,但在提供错误路径和正确答案的情况下,表现出较强的错误分析能力。

💡个人观点

论文贡献了一个LLM数学推理错误数据集,可以用于后续偏好学习,并能根据LLM的持续输出动态调整错误类型来进行纠正。

🧩附录

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值