[Transformer] LightViT: Towards Light-weight Convolution-free Vision Transformers

LightViT: towards light-weight convolution-free vision transformers

论文地址: https://arxiv.org/abs/2207.05557

代码地址: GitHub - hunto/LightViT: Official implementation for paper "LightViT: Towards Light-Weight Convolution-Free Vision Transformers"

一些轻量级的ViTs工作为增强架构性能,常将卷积操作集成于Transformer模块中。本文为探讨卷积对轻量级ViTs的必要性,设计了一种无卷积的轻量级ViTs架构LightViT,提出一种全局而高效的信息聚合方案。除了在局部窗口内执行自注意计算之外,还在self-attention中引入额外的可学习标记来捕捉全局依赖性,在FFN中引入双维注意机制。LightViT-T在ImageNet上仅用0.7G FLOPs就实现了78.7%的准确率,比PVTv2-B0高出8.2%。

一、问题引出

ViTs模型DeiT-Ti和PVTv2-B0在ImageNet上可以达到72.2%和70.5%的准确率,而经典CNN模型RegNetY-800M在类似的FLOPs下达到了76.3%的准确率。这一现象表明某些轻量级的ViTs性能反而不如同级别CNNs。

作者等人将这一现象的原因归咎于CNNs固有的归纳偏置(inductive bias),同时现有很多工作试图将卷积集成于ViTs中来提高模型性能。然而不管是宏观上直接将卷积与self-attention集成/混合,还是微观上将卷积计算纳入self-attention计算之中,都说明了卷积对于轻量级ViTs的性能提升是至关重要的存在。

作者等人认为,在ViTs中混合卷积操作,是一种信息聚合的方式,卷积通过共享内核建立了所作用token之间的明确联系。基于这一点,作者等人提出“如果这种明确的聚合能以更均匀的方式发挥作用,那么它们对于轻量级的ViTs来说实际上是不必要的”。

至此LightViT油然而生,除了继续在局部窗口内执行自注意计算之外,对架构的主要修改针对self-attention和FFN部分。在self-attention中引入可学习的全局标记来对全局依赖关系进行建模,并被广播到局部token中,因此每一个token除了拥有局部窗口注意计算带来的局部依赖关系外,还获得了全局依赖关系。在FFN中,作者等人注意到轻量级模型的通道尺寸较小,因此设计一种双维注意模块来提升模型性能。

其性能对比简图如下所示:

二、LightViT

self-attention中的局部-全局广播机制

与Swin类似,将输入特征划分为不重叠的小窗口,之后在每个小窗中执行自注意力。

然而局部窗口的不足是感受野小,长距离依赖缺失。因此本文提出一种成本较低的弥补方式,先将全局依赖关系聚集到一个小的特征空间,然后广播于局部特征。

具体过程是:引入一个可学习的全局标记G(T*C,T=8),将其concat到patchembedding后的初始输入x上。在执行上述局部窗口自注意计算的同时,利用G来收集全局信息,如上图中最右边的Aggregate部分。

这里得到的新G会被传入下一个block。

其次通过自注意力计算的方式将global representations广播于局部特征,以弥补全局依赖信息的不足。

最后将Xlocal与Xglobal进行逐元素相加。

计算代价很小,因为T=8,global tokens的尺寸远小于图像尺寸H*W以及窗口尺寸S*S。

可视化特征图如下:

在图中可以很明显的看到,可学习标记将全局信息聚合到一个小的特征空间,保留了关键信息(狗的鼻子、眼睛等),其次广播机制将全局信息传递给相关像素,使其特征得到关键增强。

FFN中的双维注意机制

在轻量级ViTs模型的FFN部分中有两个常见的不足:一个是为了尽可能的减少计算成本,通道维度被大幅限制,导致模型性能不足;另一个便是一般的FFN结构忽视了对特征空间层次上的依赖性建模。

左边为通道注意分支,用于捕捉全局信息。类似于SE的结构,先进行平均池化,再经过两个FC层,其中r代表缩减率,即将通道维度先减小至C/r,再还原为C,这样做一方面可以在小通道维度获得较轻的计算负担,另一方面便是增加了跨通道的信息交互。

右侧的分支为空间注意分支,用于捕捉局部信息,在利用FC将通道数调整至1之前,作者等人将左侧分支的全局信息输出与右侧分支的局部信息输出拼接在一起,由此全局信息可以作用于每一个token(局部信息),进一步提高了模型性能。最后将空间、通道注意想融合后作用于FFN模块输入特征。

 

Practical design for more efficient LightViT

Hierarchical structures with fewer stages

LightViT仅由“三阶段”的堆叠块构成,下采样步长分别为{8,16,32},少了一个4。

这是因为作者等人对一些分层的ViTs进行推理速度/FLOPs的测量,结果发现早期阶段的效率低于后期阶段。作者将这一现象的原因归咎于在早期阶段token更多,因此效率低下。在删除stride = 4的早期阶段后,在ImageNet上Top-1提升0.8%,在COCO检测中mAP提升0.3。

Downsample with residual patch merging

Overlapping patch embedding

图3中的stem(参考PVT v2)

LightViT的整体架构

实验

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值