运行fastGPT 第四步 配置ONE API 添加模型

上次已经装好了所有的依赖和程序。

下面在网页中配置One API ,这个是大模型的接口。配置好了之后,就可以配置fastGPT了。

打开 OneAPI 页面 添加模型

这里要添加具体的付费模型的API接口填进来。
可以通过ip:3001访问OneAPI后台,**默认账号为root密码为123456。**在OneApi中添加合适的AI大模型渠道。 比如我用质谱AI的API。

在这里插入图片描述
第一次进入,先改密码。

创建渠道 也就是质谱AI的渠道 API KEY 添加进去

添加渠道,也就是添加模型 和接口。
在这里插入图片描述
这里,比如我想添加GLM质谱AI的大模型,那么就去官网找到这个。找到具体的模型名字。因为我是用作 AI聊天客服,应对日常咨询。因此不需要强大的推理,而是需要急速回答,和便宜。
https://www.bigmodel.cn/pricing
在这里插入图片描述在这里插入图片描述
找到以上的就可以了,向量模型用来处理文本,和知识库的信息。所以要一同加入。
注意,这里要手动填入模型的完整名字哦。否则列表中可能没有。 有些新的模型版本,需要自己填写。
然后在你的大模型网站上,找到API KEY 粘贴进去,就可以了。 每次就会扣费了。
在这里插入图片描述
测试一下,这里通过了,表示模型已经就位。 可以调用了。

在这里插入图片描述

创建ONE API的令牌

创建令牌 其实也就是ONE API 的KEY 用于给fastGPT调用。
在这里插入图片描述
创建了新的令牌TOKEN之后,你就能复制它了,就是一串密钥sk开头的

然后fastGPT通过这个,来调用你的ONE API上的接口。 从而扣费。 这样就能实现对个人的管理了。 你可以通过ONE API来多给别人建立几个TOKEN ,每个人单独扣费。你能在后台看到他们的费用情况。

在这里插入图片描述
当然,您只是自己用,就随便。 给自己随便填写一个额度。使劲用就行。 保证您的大模型接口上有钱就行。

修改ONE API配置文件 添加参数

找到上一篇文章中的/fastgpt/docker-compose.yml 这个文件,修改下面的参数。 把你的ONE API得到的token粘贴进去。
好了,sk-xxxxxxXU73hQgQ6DaB01601610e41B992995cD929C6C4Ec,我的是这样的。
在这里插入图片描述
把oneapi,改成你的 ip。 把 ip填进去替换oneapi就行,其它的不用改

修改FastGPT配置文件 向其中添加模型信息

然后在去修改另一文件。/fastgpt/config.json
为fastGPT添加新模型GLM-4-AirX ,这个是和我们前面ONE API里加入的名字要一致。

 {
      "provider": "ZhiPu",
      "model": "GLM-4-AirX",  // 新添加的模型
      "name": "GLM-4-AirX",
      "maxContext": 8000,  // 你可以根据需要设置最大上下文
      "maxResponse": 4000,  // 最大回复
      "quoteMaxToken": 8000,// 最大引用内容
      "maxTemperature": 1,// 最大温度
      "charsPointsPrice": 0.01,  // n积分/1k token(商业版)
      "censor": false,// 是否开启敏感校验(商业版)
      "vision": false,// 是否支持图片输入
      "datasetProcess": true,
      "usedInClassify": true,
      "usedInExtractFields": true,
      "usedInToolCall": true,
      "usedInQueryExtension": true,
      "toolChoice": true,
      "functionCall": false,
      "customCQPrompt": "",
      "customExtractPrompt": "",
      "defaultSystemChatPrompt": "",
      "defaultConfig": {"top_p": 0.7 },// 请求API时,挟带一些默认配置(比如 GLM4 的 top_p)
      "fieldMap": {}
    }

在这里插入图片描述

添加向量模型

   {
      "provider": "ZhiPu",
      "model": "embedding-2",    // 模型名(与OneAPI对应)
      "name": "embedding-2",     // 模型展示名
      "charsPointsPrice":0.0005, // n积分/1k token
      "defaultToken": 700,       // 默认文本分割时候的 token
      "maxToken": 3000,          // 最大 token
      "weight": 100,             // 优先训练权重
      "defaultConfig": {

      } // 自定义额外参数。例如,如果希望使用 embedding3-large 的话,可以传入 dimensions:1024,来返回1024维度的向量。(目前必须小于1536维度)
    }

在这里插入图片描述
在这里插入图片描述

特别要注意的是,这个名子的大小写,千万不要写错了。 它一会儿大写一会儿小写。 错了的话,就找不到接口。报错了。
在这里插入图片描述

好了。然后在宝塔面板中,重启这两个docker

ok,搞定了,下面就是去配置FastGPT了。 下一篇文章见~。

### Windows系统上集成和使用FastGPTOneAPI #### 准备环境 为了在Windows环境下顺利运行FastGPTOneAPI,建议先安装Docker Desktop来简化容器化的应用部署过程。通过Docker Desktop,可以在不改变原有操作系统配置的情况下轻松搭建所需的开发测试环境。 #### 安装Docker Desktop 前往[Docker官网](https://www.docker.com/products/docker-desktop),下载适用于Windows版本的Docker Desktop并按照提示完成安装。安装完成后启动Docker服务,确保其正常运行[^1]。 #### 获取FastGPT项目文件 打开命令行工具(如PowerShell),创建一个新的工作目录用于存放FastGPT的相关文件,并切换到该目录下: ```powershell mkdir fastgpt-windows cd fastgpt-windows ``` 接着利用`curl`命令获取必要的配置文件: ```powershell Invoke-WebRequest -Uri "https://raw.githubusercontent.com/labring/FastGPT/main/files/deploy/fastgpt/docker-compose.yml" -OutFile docker-compose.yml Invoke-WebRequest -Uri "https://raw.githubusercontent.com/labring/FastGPT/main/projects/app/data/config.json" -OutFile config.json ``` 上述操作会从GitHub仓库中拉取最新的`docker-compose.yml`和`config.json`两个重要文件至当前路径下[^4]。 #### 启动FastGPT服务 确认所有前置准备工作无误之后,在同一命令行窗口内输入以下指令以启动FastGPT的服务实例: ```powershell docker-compose up -d ``` 此命令将以守护进程模式后台运行FastGPT及其依赖组件。首次启动可能耗时较长,请耐心等待直至初始化完毕。 #### OneAPI接口对接 对于希望进一步扩展功能或接入更多第三方LLM模型的情况,则需引入OneAPI作为中介层。考虑到OneAPI本身也提供了详细的官方文档指导,这里仅概述基本思路——即修改之前获得的`config.json`中的相应字段指向已成功架设好的OneAPI服务器地址即可实现两者间的无缝衔接[^2]。 #### 测试连接 最后一步是验证整个系统的连通性和可用性。可以通过浏览器或其他HTTP客户端向暴露出来的API endpoint发送请求来进行简单的交互尝试。如果一切顺利的话,应该能够看到预期的结果返回。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值