亚马逊云科技Amazon Bedrock模型评估工具帮助用户识别合适的模型

be4c2b3fa5fa37835108debfcd23659d.jpeg

关键字: [Model Evaluation, Text Generation, Evaluation Metrics, Accuracy Assessment, Robustness Testing]

本文字数: 400, 阅读完需: 2 分钟

导读

演讲者介绍了”亚马逊云科技-模型评估在Amazon Bedrock 中比较选择正确的 FM”。在这个演讲中,他阐释了Amazon Bedrock 模型评估工具如何简化识别合适模型的过程。具体而言,用户可以选择候选模型、设置任务类型和评估指标、定义存储结果的 S3 存储桶,并设置服务角色。演讲重点关注Amazon Bedrock 如何实现评估模型准确性、跨不同数据集的稳健性,以及轻松选择适合使用案例的正确模型。

演讲精华

该视频介绍了亚马逊云科技(AWS)中的Amazon Bedrock模型评估工具(Amazon Bedrock Model Evaluation Tool)。该工具旨在帮助用户更轻松地为特定用例识别合适的模型。

首先,视频展示了如何选择候选模型进行评估,在这个例子中,将评估Titan Text Express模型。接下来,需要设置任务类型,即评估通用文本生成性能。然后,指定评估指标,对于这个项目,最感兴趣的是准确性和稳健性。对于每个指标,可以选择内置数据集,也可以提供存储在S3中的自定义数据集。在这个例子中,选择了内置数据集。

之后,需要定义存储评估结果的S3存储桶。最后,需要设置服务角色,以允许Amazon Bedrock将数据上传到S3存储桶。

运行评估后,可以查看结果。在准确性方面,该模型得分为21,表明模型输出的准确性较低。在稳健性方面,该模型针对三个不同的数据集进行评分,以比较在输入提示略有变化时的表现一致性。该模型在WikiTex 2数据集上表现出色,得分为96.8,而在其他数据集上的得分较低。

总的来说,这个工具使得选择适合特定用例的正确模型变得更加简单。

总结

在探索模型选择的错综复杂领域时,Amazon Bedrock 的模型评估工具凭借其高效性脱颖而出。这一解决方案简化了识别最佳模型以满足独特需求的过程,让人能够轻松做出明智决策。

首先,该工具允许无缝评估候选模型,并根据特定用例量身定制评估。无论是通用文本生成还是其他领域,评估指标都可以精细定制,以符合优先事项,无论是准确性、稳健性还是任何其他关键因素。其次,该工具提供了利用内置数据集或整合存储在 Amazon S3 中的自有数据的灵活性,确保全面和量身定制的评估过程。第三,该工具的直观界面使人可以轻松配置评估结果的存储位置和设置必要的服务角色,确保流畅和安全的体验。

评估完成后,该工具将提供全面的分析,深入了解模型在各种指标下的表现。这让人能够做出明智的决策,选择最符合特定需求的模型,并优化工作流程以实现最大效率和效果。总之,Amazon Bedrock 的模型评估工具简化了模型选择的复杂过程,让人能够自信精准地发挥人工智能技术的全部潜力。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 -- 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。

### 如何在 AWS Bedrock 中获取模型访问权限 要在 AWS Bedrock 中成功获取模型访问权限并解决无权访问模型的问题,可以按照以下方式操作: #### 1. 配置 IAM 策略以允许调用特定模型 AWS Identity and Access Management (IAM) 是管理资源访问的核心工具。为了使应用程序能够调用特定的基础模型,需要创建一个合适的 IAM 策略来授权此行为。以下是示例策略配置[^1]: ```json { "Version": "2012-10-17", "Statement": [ { "Sid": "AllowInference", "Effect": "Allow", "Action": ["bedrock:InvokeModel"], "Resource": "arn:aws:bedrock:*::*/<foundation-model>/<model-id-of-model-to-allow>" } ] } ``` 上述 JSON 文件中的 `Resource` 字段指定了要授予权限的具体模型 ARN。如果未正确设置此字段,则可能导致无权访问某些模型。 #### 2. 使用 Amazon Bedrock 提供的功能扩展应用 Amazon Bedrock 不仅支持直接调用预训练好的基础模型,还允许用户通过微调或知识增强的方式定制化模型[^2]。因此,如果您希望获得更广泛的模型功能,可以通过以下两种途径实现: - **微调现有模型**:利用自有业务数据调整已有模型的行为。 - **训练新模型**:完全基于内部数据集构建新的机器学习模型。 这两种方法都需要额外的时间投入和技术积累,但对于满足个性化需求至关重要。 #### 3. 关于可用模型数量有限的原因分析 尽管官方宣传声称提供多种类型的高质量大语言模型(LLMs),但实际上开放给用户的选项可能较为局限[^3]。这主要是因为以下几个方面原因造成的: - 法律法规限制; - 商业合作条款约束; - 技术兼容性和稳定性考量。 这些因素共同决定了当前阶段下可供选择的实际模型种类较少的情况。 #### 4. 参考 InvokeModel API 文档完成集成工作 最后,在实际编码过程中还需要仔细阅读有关 invokeModel 方法的相关资料[^4]。下面给出了一段简单的 JavaScript 调用实例作为参考: ```javascript const bedrockRuntime = new AWS.BedrockRuntime(); let params = { body: JSON.stringify({ promptData: "Tell me about the weather today.", maxTokensToSample: 50, temperature: 0.8, topP: 0.9 }), modelId: 'anthropicsclaude-v2', accept: '*/*', contentType: 'application/json' }; bedrockRuntime.invokeModel(params, function(err,data){ if (!err){ console.log(data); }else{ console.error('Error:', err); } }); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值