1.差异分析
# input是输出的数据,--focal-metadatum --last-metadatum这俩后面的参数是找差异的分组依据
# 激活conda
conda activate humann2
# input是输出的数据,--focal-metadatum --last-metadatum这俩后面的参数是找差异的分组依据
humann2_associate --input pathabundance_acq.pcl --focal-metadatum Group --focal-type categorical --last-metadatum Group --output associate_acq.txt
# 生成条形图 这里我前面写了循环,实际可以不写
humann2_barplot --sort sum metadata --input pathabundance.pcl --focal-feature ${id%:*} --focal-metadatum Group --last-metadatum Group --output barplot_${id%:*}.pdf
2.ko注释
# umann2_regroup_table 修改-g参数,转换为eggNOG(-g uniref90_eggnog),酶(-g uniref90_level4ec),pfam蛋白结构域(-g uniref90_pfam),go(-g uniref90_go)和rxn(-g uniref90_rxn),再合并
#添加相应注释map_eggnog_name.txt.gz,map_go_name.txt.gz……
# humann2转换 数据库那里可以换成别的
humann2_regroup_table -i A.tsv -g uniref90_ko -o B.tsv
# 解压缩数据库
zcat utility_mapping/map_ko_