电气EPlan软件第六章到第十章的学习

电气EPlan软件第六章到第十章的学习

6.PLC设计

(1)PLC的创建与放置
打开导航器:
在这里插入图片描述

(2)绘制时,输入一般放在原理图下方,输出一般放在原理图上方
(3)PLC的编辑方式的修改:
XY的编辑方式偏向于日式三菱欧姆龙的PLC编辑方式,不同厂商的PLC设备在我们图纸上放置的时候,对于PLC上面的连接点(比如输入输出、数字量或者模拟量),它都有不同的编辑方式,所以在编辑之前我们应清楚PLC的厂商和型号,以此来确定PLC的编辑方式。
修改PLC的编址方式:
在这里插入图片描述
(4)修改连接点代号
在这里插入图片描述
全选中你想要修改的连接点,然后右键——表格式编辑,然后看到:
在这里插入图片描述
到excel表格当中把对应顺序编号复制到上面的地方(二者格式是一样的)
在这里插入图片描述
(5)地址/分配列表
在这里插入图片描述
在这里可以设置一些数据类型、功能文本等等。
在这里插入图片描述

7.线号放置与层管理

7.1连接编号的手自动放置

(1)自动生成的连接线没有属性,需要通过连接定义点来规定连接生成的属性,就是我们常用的线号。其导航器打开方式为:
在这里插入图片描述
常用的还有电位导航器和中断点导航器。
(2)在导航器中选择你要修改的线条属性,可以进行线宽、颜色等修改:
在这里插入图片描述
连接线可以是导线、插针等多种连线。
(3)连接定义点的放置
在放置之前,可以对线号进行颜色、编号、截面积等等数据进行设计:
在这里插入图片描述
在这里插入图片描述
(4)改变线缆的颜色
在这里插入图片描述
三根火线的颜色一般是黄绿红,零线一般是蓝色,地线一般是黄绿双线用的多(没有颜色时用黑色来代替)。
当你修改了颜色之后发现它的颜色并没有发生改变,这时候就需要更新一下:
在这里插入图片描述
但是得注意一下中断点的重复命名以及关联的关系,以及电位的传递关系:
在这里插入图片描述
这里的2是不需要传到1,4不需要传到3,6不需要传到5所以可以删除:
在这里插入图片描述
(5)通过自动放置信号:
在这里插入图片描述
在这里插入图片描述
基于电位:指的就是电位相同的连接点,使用同样的连接编号。
基于连接:每一个连接它都放置一个新的连接点。
基于信号:它就是信号相同的定义连接点,它都会有一个相同的编号。
(6)连接编号的设置
在这里插入图片描述
在这里插入图片描述
(7)把自定义的规则放置到项目当中,然后进行更新
在这里插入图片描述
然后进行命名
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

7.2连接颜色与层管理

(1)手动和自动的线号放置学习完成之后,我们需要思考是否能够用一种方式来满足我们画电路图的需求的?其实自动放置之后,并不是每个放置的线号都能符合我们的要求,就需要我们去手动修改一下。修改之前有一些设置需要我们去修改一下。
在这里插入图片描述
在这里插入图片描述
(2)选择你要修改的线号,然后双击,修改完成按下确定,会显示以下界面:
在这里插入图片描述
(3

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红狐狸的北北记

红狐狸背着行囊上路,感谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值