tokenizer.apply_chat_template 用法

tokenizer.apply_chat_template 是 Hugging Face Transformers 库中的一个方法,用于将一系列聊天消息格式化为模型所需的输入字符串。 citeturn0search1

输入:

该方法接受一个包含多轮对话的列表,每个对话由一个字典表示,包含两个键:role(角色)和 content(内容)。

例如:

chat = [
    {"role": "user", "content": "你好,你是谁?"},
    {"role": "assistant", "content": "我是一个AI助手。"}
]

输出:

apply_chat_template 方法将根据分词器的 chat_template 属性,将上述聊天记录格式化为模型期望的字符串格式。

例如,假设 chat_template 定义为:

{% for message in messages %}
    {% if message['role'] == 'user' %}
        <|USER|>{{ message['content'] }}<|END_USER|>
    {% elif message['role'] == 'assistant' %}
        <|ASSISTANT|>{{ message['content'] }}<|END_ASSISTANT|>
    {% endif %}
{% endfor %}

那么,apply_chat_template 方法的输出将是:

<|USER|>你好,你是谁?<|END_USER|><|ASSISTANT|>我是一个AI助手。<|END_ASSISTANT|>

请注意,实际的输出格式取决于模型的 chat_template 定义。

作用:

apply_chat_template 方法的主要作用是确保输入格式与模型训练时的格式一致。这对于模型的性能至关重要,因为不一致的输入格式可能导致性能下降。 citeturn0search1

需要注意的是,在较新的 Transformers 版本中,tokenizer 可能不再包含默认的聊天模板,需要用户显式指定模板或设置 tokenizer.chat_template 属性。

总而言之,tokenizer.apply_chat_template 方法的作用是根据模型的 chat_template 属性,将聊天消息格式化为模型所需的输入格式,以确保模型能够正确理解和处理输入的聊天内容。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值