tokenizer.apply_chat_template
是 Hugging Face Transformers 库中的一个方法,用于将一系列聊天消息格式化为模型所需的输入字符串。 citeturn0search1
输入:
该方法接受一个包含多轮对话的列表,每个对话由一个字典表示,包含两个键:role
(角色)和 content
(内容)。
例如:
chat = [
{"role": "user", "content": "你好,你是谁?"},
{"role": "assistant", "content": "我是一个AI助手。"}
]
输出:
apply_chat_template
方法将根据分词器的 chat_template
属性,将上述聊天记录格式化为模型期望的字符串格式。
例如,假设 chat_template
定义为:
{% for message in messages %}
{% if message['role'] == 'user' %}
<|USER|>{{ message['content'] }}<|END_USER|>
{% elif message['role'] == 'assistant' %}
<|ASSISTANT|>{{ message['content'] }}<|END_ASSISTANT|>
{% endif %}
{% endfor %}
那么,apply_chat_template
方法的输出将是:
<|USER|>你好,你是谁?<|END_USER|><|ASSISTANT|>我是一个AI助手。<|END_ASSISTANT|>
请注意,实际的输出格式取决于模型的 chat_template
定义。
作用:
apply_chat_template
方法的主要作用是确保输入格式与模型训练时的格式一致。这对于模型的性能至关重要,因为不一致的输入格式可能导致性能下降。 citeturn0search1
需要注意的是,在较新的 Transformers 版本中,tokenizer
可能不再包含默认的聊天模板,需要用户显式指定模板或设置 tokenizer.chat_template
属性。
总而言之,tokenizer.apply_chat_template
方法的作用是根据模型的 chat_template
属性,将聊天消息格式化为模型所需的输入格式,以确保模型能够正确理解和处理输入的聊天内容。