计算方法-数值积分与微分

一、数值积分的基本思想

连续量的积分近似为离散量的加权和
∫ a b f ( x ) d x ≈ ∑ n = 0 N A n f ( x n ) \int_{a}^{b} f(x) \mathrm{d} x \approx \sum_{n=0}^{N} A_{n} f\left(x_{n}\right) abf(x)dxn=0NAnf(xn)
A n A_n An f ( x n ) f(x_n) f(xn)的权值。

代数精度

f ( x ) = 1 , x , x 2 , ⋯   , x m f(x)=1,x,x^2,\cdots,x^m f(x)=1,x,x2,,xm 时 有:
∫ a b f ( x ) d x = ∑ n = 0 N A n f ( x n ) \int_{a}^{b} f(x) \mathrm{d} x = \sum_{n=0}^{N} A_{n} f\left(x_{n}\right) abf(x)dx=n=0NAnf(xn)
成立,且对于 f ( x ) = x m + 1 f(x)=x^{m+1} f(x)=xm+1不成立,则称: ∑ n = 0 N A n f ( x n ) \sum_{n=0}^{N} A_{n} f\left(x_{n}\right) n=0NAnf(xn)具有m次代数精度。

二、插值型求积公式

插值型求积公式的基本思想

通过n个互异结点构造Lagrange插值多项式,然后对该多项式求积。

求积公式

已知Lagrange插值多项式
L n ( x ) = ∑ i = 0 n [ ( ∏ j = 0 , j ≠ i n x − x j x i − x j ) y i ] L_n(x) = \sum_{i=0}^{n} \left [ \left ( \prod_{j=0,j \ne i}^{n} \frac{x-x_j}{x_i-x_j}\right ) y_i \right ] Ln(x)=i=0nj=0,j=inxixjxxjyi
则有
A i = ∫ a b ∏ j = 0 , j ≠ i n x − x j x i − x j d x A_i=\int_a^b \prod_{j=0,j \ne i}^{n} \frac{x-x_j}{x_i-x_j} \mathrm dx Ai=abj=0,j=inxixjxxjdx
同理,插值型求积公式的余项为
R [ f ] = ∫ a b f ( n + 1 ) ( ξ ) ( n + 1 ) ! ∏ i = 0 n ( x − x i ) d x R[f]=\int_a^b\frac{f^{(n+1)}(\xi)}{(n+1) !}\prod_{i=0}^{n}\left(x-x_{i}\right) \mathrm d x R[f]=ab(n+1)!f(n+1)(ξ)i=0n(xxi)dx

插值型求积公式的代数精度

插值型求积公式的充分必要条件是它至少具有n次代数精度。

问题

  • 不好编程
  • 计算量大
  • 当n较大时,计算量明显提升。

三、牛顿-柯特斯求积公式

牛顿-柯特斯求积公式的引出

当求积结点 x i x_i xi等距结点,可以使用相对于插值型求积公式较为简单的公式。

已知条件

  • h = b − a n h = \frac{b-a}{n} h=nba
  • x i = a + i h ( i = 0 , 1 , 2 , . . . , n ) x_i = a+ih \quad(i=0,1,2,...,n) xi=a+ihi=0,1,2,...,n

公式

∫ a b f ( x ) d x ≈ ( b − a ) ∑ i = 0 N C i ( n ) f ( x i ) \int_{a}^{b} f(x) \mathrm{d} x \approx(b-a) \sum_{i=0}^{N} C_{i}^{(n)} f(x_i) abf(x)dx(ba)i=0NCi(n)f(xi)
C i ( n ) = ( − 1 ) n − i n [ i ! ( n − i ) ! ] ∫ 0 n ∏ j = 0 , j ≠ i n ( t − j ) d t C_i^{(n)}=\frac{(-1)^{n-i}}{n[i !(n-i) !]} \int_{0}^{n} \prod_{j=0, j \neq i}^{n}(t-j) \mathrm{d} t Ci(n)=n[i!(ni)!](1)ni0nj=0,j=in(tj)dt

为什么提出公式中的(b-a)?

因为 C i ( n ) C_{i}^{(n)} Ci(n)只与 ni 有关,与函数的区间 [ a , b ] [a,b] [a,b]无关,提出 ( b − a ) (b-a) ba使求积公式更具有一般性。

柯特斯系数 C i ( n ) C_{i}^{(n)} Ci(n)的性质

∑ i = 0 n C i ( n ) = 1 \sum_{i=0}^n C_{i}^{(n)}= 1 i=0nCi(n)=1
n = 8 n=8 n=8 时,柯特斯系数出现负数,稳定性得不到保证。
一般采用 n ≤ 4 n\le4 n4 的牛顿-柯特斯求积公式。

优点

相较于插值型求积公式 A i A_i Ai只与区间和 C i ( n ) C_i^{(n)} Ci(n)有关,因为要求 n ≤ 8 n\le 8 n8,故系数可直接通过表格给出,或预处理给出,加快了求积速度。

缺点

要求结点必须为等距结点。不灵活。

牛顿-柯特斯求积公式其他特性

1.特别n值的求积公式

  • 当n=1时,为梯形求积公式
  • 当n=2时,为辛普生求积公式(Simpson)
    I ( f ) ≈ S = b − a 6 [ f ( a ) + 4 f ( b + a 2 ) + f ( b ) ] I(f) \approx S = \frac{b-a}{6}[f(a)+4f(\frac{b+a}{2})+f(b)] I(f)S=6ba[f(a)+4f(2b+a)+f(b)]
  • 当n=4时,为柯特斯求积公式
    I ( f ) ≈ C = b − a 90 [ 7 f ( x 0 ) + 32 f ( x 1 ) + 12 f ( x 2 ) + 32 f ( x 3 ) + 7 f ( x 4 ) ] I(f) \approx C = \frac{b-a}{90}[7f(x_0)+32f(x_1)+12f(x_2)+32f(x_3)+7f(x_4)] I(f)C=90ba[7f(x0)+32f(x1)+12f(x2)+32f(x3)+7f(x4)]

2.代数精度

n n n奇数时,至少具有 n n n 次代数精度。
n n n偶数时,至少具有 n + 1 n+1 n+1 次代数精度。

代数精度为恒为奇数

3.误差估计

梯形求积公式截断误差

R 1 ( f ) = − ( b − a ) 3 12 f ′ ′ ( ξ ) , ξ ∈ [ a , b ] R_1(f)=-\frac{(b-a)^{3}}{12} f^{\prime \prime}(\xi), \quad \xi \in[a, b] R1(f)=12(ba)3f(ξ),ξ[a,b]

Simpson求积公式截断误差

R 2 ( f ) = − ( b − a ) 5 2880 f ( 4 ) ( ξ ) , ξ ∈ [ a , b ] R_{2}(f)=-\frac{(b-a)^{5}}{2880} f^{(4)}(\xi), \quad \xi \in[a, b] R2(f)=2880(ba)5f(4)(ξ),ξ[a,b]

柯特斯求积公式截断误差

R 4 ( f ) = − ( b − a ) 7 1935360 f ( 6 ) ( ξ ) , ξ ∈ [ a , b ] R_{4}(f)=-\frac{(b-a)^{7}}{1935360} f^{(6)}(\xi), \quad \xi \in[a, b] R4(f)=1935360(ba)7f(6)(ξ),ξ[a,b]

四、复合求积公式

基本思路

插值型求积公式牛顿-柯特斯求积公式 n值较大时,数值不稳定且难以计算。因此我们在求一个积分区间时,把积分区间等分为若干小区间,在每个小区间内采用次数不高的求积公式。

求积公式

复合梯形求积公式

∫ a b f ( x ) d x ≈ T n = h 2 [ f ( a ) + 2 ∑ n = 1 N − 1 f ( x n ) + f ( b ) ] \int_{a}^{b} f(x) \mathrm{d} x \approx T_n = \frac{h}{2}\left[f(a)+2 \sum_{n=1}^{N-1} f\left(x_{n}\right)+f(b)\right] abf(x)dxTn=2h[f(a)+2n=1N1f(xn)+f(b)]

复合梯形求积公式余项

R n = − h 2 12 [ f ′ ( b ) − f ′ ( a ) ] = − ( b − a ) 3 12 h 2 f ′ ′ ( ξ ) , ξ ∈ [ a , b ] R_n = -\frac{h^{2}}{12}\left[f^{\prime}(b)-f^{\prime}(a)\right]=-\frac{(b-a)^{3}}{12} h^2f^{\prime \prime}(\xi), \quad \xi \in[a, b] Rn=12h2[f(b)f(a)]=12(ba)3h2f(ξ),ξ[a,b]

复合Simpson求积公式

∫ a b f ( x ) d x ≈ h 6 [ f ( a ) + 4 ∑ n = 0 N − 1 f ( x n + 1 2 ) + 2 ∑ n = 1 N − 1 f ( x n ) + f ( b ) ] \int_{a}^{b} f(x) \mathrm{d} x \approx \frac{h}{6}\left[f(a)+4 \sum_{n=0}^{N-1} f\left(x_{n+\frac{1}{2}}\right)+2 \sum_{n=1}^{N-1} f\left(x_{n}\right)+f(b)\right] abf(x)dx6h[f(a)+4n=0N1f(xn+21)+2n=1N1f(xn)+f(b)]

便于计算机计算的公式

∫ a b f ( x ) d x ≈ h 6 { f ( a ) − f ( b ) + 2 ∑ n = 1 N [ 2 f ( x ~ 2 n − 1 ) + f ( x ~ 2 n ) ] } \int_{a}^{b} f(x) \mathrm{d} x \approx \frac{h}{6}\left\{f(a)-f(b)+2 \sum_{n=1}^{N}\left[2 f\left(\tilde{x}_{2 n-1}\right)+f\left(\tilde{x}_{2 n}\right)\right]\right\} abf(x)dx6h{f(a)f(b)+2n=1N[2f(x~2n1)+f(x~2n)]}

复合Simpson求积公式余项

R n = − h 4 2880 [ f ( 3 ) ( b ) − f ( 3 ) ( a ) ] = − b − a 180 ( h 2 4 ) f ( 4 ) ( ξ ) , ( ξ ∈ ( a , b ) ) R_n =-\frac{h^{4}}{2880}\left[f^{(3)}(b)-f^{(3)}(a)\right]=-\frac{b-a}{180}\left(\frac{h}{2}^4\right)f^{(4)}(\xi),\quad (\xi \in (a,b)) Rn=2880h4[f(3)(b)f(3)(a)]=180ba(2h4)f(4)(ξ),(ξ(a,b))

在计算量相同的情况下,复合Simpson公式复合梯形公式的精度高。

五、变步长求积公式

引入

通常,我们需要积分计算达到某个精度,而不是确定的步长。因此需要引入变步长方法。

基本思想

在步长逐次折半的过程中,反复用复合求积公式计算,知道步长折半前后两次积分差的绝对值 ∣ I 2 n ( f ) − I n ( f ) ∣ |I_{2n}(f)-I_n(f)| I2n(f)In(f)小于允许精度。

变步长梯形公式

T k = 1 2 T k − 1 + b − a 2 k ∑ n = 1 2 k − 1 f [ a + 2 n − 1 2 k ( b − a ) ] , k = 1 , 2 , ⋯ T_{k}=\frac{1}{2} T_{k-1}+\frac{b-a}{2^{k}} \sum_{n=1}^{2^{k-1}} f\left[a+\frac{2 n-1}{2^{k}}(b-a)\right], \quad k=1,2, \cdots Tk=21Tk1+2kban=12k1f[a+2k2n1(ba)],k=1,2,


变步长的复合梯形公式收敛速度非常缓慢。因此如何提高收敛速度以节省计算量成为一个实际的问题。
由此,引出龙贝格求积公式(Richardson)

六、龙贝格求积公式(Romberg)

梯形加速公式

S n = 4 4 − 1 T 2 n − 1 4 − 1 T n = T 2 n + ( T 2 n − T n ) / 3 S_n=\frac{4}{4-1}T_{2n}-\frac{1}{4-1}T_n = T_{2n}+(T_{2n}-T_n)/3 Sn=414T2n411Tn=T2n+(T2nTn)/3
通过梯形加速公式可以得到具有较高精度的Simpson公式。便可再进行Simpson加速公式

Simpson加速求积公式

C n = 4 2 4 2 − 1 S 2 n − 1 4 2 − 1 S n = S 2 n + ( S 2 n − S n ) / 15 C_n=\frac{4^2}{4^2-1}S_{2n}-\frac{1}{4^2-1}S_n = S_{2n}+(S_{2n}-S_n)/15 Cn=42142S2n4211Sn=S2n+(S2nSn)/15

柯特斯加速求积公式

R n = 4 3 4 3 − 1 C 2 n − 1 4 3 − 1 C n = C 2 n + ( C 2 n − C n ) / 63 R_n=\frac{4^3}{4^3-1}C_{2n}-\frac{1}{4^3-1}C_n = C_{2n}+(C_{2n}-C_n)/63 Rn=43143C2n4311Cn=C2n+(C2nCn)/63

一般的龙贝格求积公式

{ T 0 ( k ) = 1 2 T 0 ( k − 1 ) + b − a 2 k ∑ n = 1 2 k − 1 f [ a + 2 n − 1 2 k ( b − a ) ] , k = 1 , 2 , ⋯   , T m ( l ) = 4 m T m − 1 ( l + 1 ) − T m − 1 ( l ) 4 m − 1 , l = 0 , 1 , ⋯   , m = 1 , 2 , ⋯   . \left\{\begin{array}{l} T_{0}^{(k)}=\frac{1}{2} T_{0}^{(k-1)}+\frac{b-a}{2^{k}} \sum_{n=1}^{2^{k-1}} f\left[a+\frac{2 n-1}{2^{k}}(b-a)\right], k=1,2, \cdots, \\ \\ T_{m}^{(l)}=\frac{4^{m} T_{m-1}^{(l+1)}-T_{m-1}^{(l)}}{4^{m}-1}, \quad l=0,1, \cdots, \quad m=1,2, \cdots . \end{array}\right. T0(k)=21T0(k1)+2kban=12k1f[a+2k2n1(ba)],k=1,2,,Tm(l)=4m14mTm1(l+1)Tm1(l),l=0,1,,m=1,2,.
T 0 T_0 T0为梯形公式, T 1 T_1 T1为Simpson公式, T 2 T_2 T2为柯特斯公式。
因为当 m ≥ 4 m\ge 4 m4时,第一个系数接近1,第二个系数接近0,与前一个公式计算结果没有很大差别,故一般只计算到柯特斯加速公式 R n , R 2 n , R 4 n , ⋯ R_n,R_{2n},R_{4n},\cdots Rn,R2n,R4n,

注:这与❀科教材中描述的不同,❀科教材中是依次计算 T m l T_m^l Tml,直到达到精度值 ∣ T m 0 − T m − 1 0 ∣ < ε |T_m^0-T^0_{m-1}|<\varepsilon Tm0Tm10<ε

计算步骤

李桂成计算方法教材计算步骤:

∣ R 2 n − R n ∣ < ε |R_{2n}-R_n|<\varepsilon R2nRn<ε则选取 R 2 n R_{2n} R2n为近似值。
否则步长折半,计算 R 4 n R_{4n} R4n,比较 R 2 n , R 4 n R_{2n},R_{4n} R2n,R4n依次类推,直到小于精度 ε \varepsilon ε
T 1 ↓ ↘ T 2 → S 1 ↓ ↘ ↘ T 4 → S 2 → C 1 ↓ ↘ ↘ ↘ T 8 → S 4 → C 2 → R 1 ↓ ↘ ↘ ↘ T 16 → S 8 → C 4 → R 2 ↓ ↘ ↘ ↘ ⋮ → ⋮ → ⋮ → ⋮ \begin{array}{ccccccc} T_{1} & & & & & & \\ \downarrow & \searrow & & & & & \\ T_{2} & \rightarrow & S_{1}& & & & \\ \downarrow & \searrow & & \searrow & & & \\ T_{4}& \rightarrow & S_{2}& \rightarrow & C_{1} & & \\ \downarrow & \searrow & & \searrow & & \searrow & \\ T_{8}& \rightarrow & S_{4}& \rightarrow & C_{2}& \rightarrow & R_{1}\\ \downarrow & \searrow & & \searrow & & \searrow & \\ T_{16}& \rightarrow & S_{8} & \rightarrow & C_{4} & \rightarrow & R_{2}\\ \downarrow & \searrow & & \searrow & & \searrow & \\ \vdots& \rightarrow & \vdots & \rightarrow & \vdots & \rightarrow & \vdots \end{array} T1T2T4T8T16S1S2S4S8C1C2C4R1R2
华科教材计算步骤
T 0 ( 0 ) ↓ ↘ T 0 ( 1 ) → T 1 ( 0 ) ↓ ↘ ↘ T 0 ( 2 ) → T 1 ( 1 ) → T 2 ( 0 ) ↓ ↘ ↘ ↘ T 0 ( 3 ) → T 1 ( 2 ) → T 2 ( 1 ) → T 3 ( 0 ) \begin{array}{ccccccc} T_{0}^{(0)} & & & & & & \\ \downarrow & \searrow & & & & & \\ T_{0}^{(1)} & \rightarrow & T_{1}^{(0)} & & & & \\ \downarrow & \searrow & & \searrow & & & \\ T_{0}^{(2)} & \rightarrow & T_{1}^{(1)} & \rightarrow & T_{2}^{(0)} & & \\ \downarrow & \searrow & & \searrow & & \searrow & \\ T_{0}^{(3)} & \rightarrow & T_{1}^{(2)} & \rightarrow & T_{2}^{(1)} & \rightarrow & T_{3}^{(0)} \end{array} T0(0)T0(1)T0(2)T0(3)T1(0)T1(1)T1(2)T2(0)T2(1)T3(0)

高斯求积公式(Gauss)

由于代数精度与结点的选取有关,因此选取特定的高斯点,可使插值型求积公式的代数精度达到最大,最大代数精度为 2 n + 1 2n+1 2n+1

高斯求积公式的一般形式

∫ a b f ( t ) d t = b − a 2 ∫ − 1 1 f ( b − a 2 x + a + b 2 ) d x \int_{a}^{b} f(t) \mathrm{d} t=\frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b-a}{2} x+\frac{a+b}{2}\right) \mathrm{d} x abf(t)dt=2ba11f(2bax+2a+b)dx
将x的取值限定在 [ − 1 , 1 ] [-1,1] [1,1]之间,再离散求解。
∫ a b f ( t ) d t = b − a 2 ∑ i = 0 n A i f ( b − a 2 t i + a + b 2 ) \int_{a}^{b} f(t) \mathrm{d} t=\frac{b-a}{2} \sum_{i=0}^{n}A_i f\left(\frac{b-a}{2} t_i+\frac{a+b}{2}\right) abf(t)dt=2bai=0nAif(2bati+2a+b)
求解如上插值型求积公式的关键,便是求高斯点。从而引出高斯-勒让德求积公式

高斯-勒让德求积公式(Gauss-Legendre)

勒让德多项式

定义: 以区间 [ − 1 , 1 ] [-1,1] [1,1] 内的高斯点 x i x_i xi 为零点的n+1次多项式为勒让德多项式。

勒让德多项式的性质

①正交性
( P n , P m ) = ∫ − 1 1 P n ( x ) P m ( x ) d x = { 0 , m ≠ n 2 2 n + 1 , m = n (P_n,P_m)= \int_{-1}^{1} { P_n(x)P_m(x) dx} =\begin{cases} & 0,\quad m\ne n\\ & \frac{2}{2n+1},\quad m=n \end{cases} (Pn,Pm)=11Pn(x)Pm(x)dx={0,m=n2n+12,m=n
②递推公式
( n + 1 ) P n + 1 ( x ) = ( 2 n + 1 ) x P n ( x ) − n P n − 1 ( x ) ( n = 1 , 2 , ⋯   ) (n+1)P_{n+1}(x)=(2n+1)xP_n(x)-nP_{n-1}(x)\quad (n=1,2,\cdots) (n+1)Pn+1(x)=(2n+1)xPn(x)nPn1(x)(n=1,2,)
由:
P 0 ( x ) = 1 , P 1 ( x ) = x P_0(x) = 1,P_1(x)=x P0(x)=1,P1(x)=x
得出:
P 2 ( x ) = 1 2 ( 3 x 2 − 1 ) P 3 ( x ) = 1 2 ( 5 x 3 − 3 x ) ⋯ 以 此 类 推 P_2(x)=\frac{1}{2}(3x^2-1)\\ P_3(x)=\frac{1}{2}(5x^3-3x)\\ \quad\\ \cdots 以此类推 P2(x)=21(3x21)P3(x)=21(5x33x)
③奇偶性
P n ( − x ) = ( − 1 ) n P n ( x ) P_n(-x)=(-1)^nP_n(x) Pn(x)=(1)nPn(x)
P n P_n Pn在区间[-1,1]内有n个不同的实零点。

高斯-勒让德求积公式的使用

当有一个结点时
P 1 ( x ) = x = 0 , 即 x 0 = 0 P_1(x)=x=0,即x_0=0 P1(x)=x=0x0=0即高斯点为 x 0 = 0 x_0=0 x0=0

当有两个结点时
P 2 ( x ) = 1 2 ( 3 x 2 − 1 ) = 0 , 即 x 0 = − 1 3 , x 1 = 1 3 P_2(x)=\frac{1}{2}(3x^2-1)=0,即x_0=-\frac{1}{\sqrt{3}},x_1=\frac{1}{\sqrt{3}} P2(x)=21(3x21)=0x0=3 1,x1=3 1即高斯点为 x 0 = − 1 3 , x 1 = 1 3 x_0=-\frac{1}{\sqrt{3}},x_1=\frac{1}{\sqrt{3}} x0=3 1,x1=3 1

同理,当有三个结点时
P 2 ( x ) = 1 2 ( 5 x 3 − 3 x ) , 即 x 0 = − 3 5 , x 1 = 0 , x 2 = 3 5 P_2(x)=\frac{1}{2}(5x^3-3x),即x_0=-\sqrt\frac{3}{5},x_1=0,x_2=\sqrt\frac{3}{5} P2(x)=21(5x33x)x0=53 ,x1=0x2=53

得出高斯点后,将高斯点代入下式
∫ a b f ( t ) d t = b − a 2 ∑ i = 0 n A i f ( b − a 2 x i + a + b 2 ) x i 为 [ − 1 , 1 ] 上 的 高 斯 点 , b − a 2 x i + a + b 2 为 [ a , b ] 上 的 高 斯 点 \int_{a}^{b} f(t) \mathrm{d} t=\frac{b-a}{2} \sum_{i=0}^{n}A_i f\left(\frac{b-a}{2} x_i+\frac{a+b}{2}\right) \\ \quad\\ x_i为[-1,1]上的高斯点,\frac{b-a}{2} x_i+\frac{a+b}{2}为[a,b]上的高斯点 abf(t)dt=2bai=0nAif(2baxi+2a+b)xi[1,1]2baxi+2a+b[a,b]
求解 A i A_i Ai即可得到高斯-勒让德求积公式

也可利用提高代数精度的方法设计高斯求积公式

高斯-勒让德求积公式的使用

①稳定性
虽然高斯点会有舍入误差,但是误差是可控的,具有较好稳定性。
②精度高
复合梯形求积公式龙贝格求积公式高斯-勒让德求积公式具有较高精度。

数值微分

无论是中点公式还是插值型微分公式,数值微分都为
f ′ ( a ) ≈ f ( a + h ) − f ( a − h ) 2 h f'(a)\approx\frac{f(a+h)-f(a-h)}{2h} f(a)2hf(a+h)f(ah)

性质

缩小步长不一定能提高计算结果精度。根源在于,实际计算中,不但有截断误差,还有舍入误差,而数值微分对舍入误差非常敏感。

因此在计算数值微分时,一定要进行误差分析,选取合适的h值。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Elsa的迷弟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值