无人驾驶-控制-LQR(运动学)

无人驾驶-控制-LQR(运动学)

一、车辆建模

在这里插入图片描述

二、参考轨迹

  • 利用泰勒展开,进行线性化
    在这里插入图片描述
  • 离散化处理
    在这里插入图片描述

对离散后的式子进行处理,得到X(k+1)的表达式
在这里插入图片描述

综上:
在这里插入图片描述
由于系统矩阵A和输入矩阵B的元素随时间变化,所以上述系统是一个线性时变系统。

三、LQR控制律设计

(1)设计代价函数
在这里插入图片描述其中,Q、R就是需要设计的半正定矩阵和正定矩阵。

为什么这么设计代价函数?

代价函数J 需要达到最小值,那么在t 趋近于无穷时,状态向量x(t)肯定趋近于0,即是达到了系统稳态;同理,t 趋近于无穷时,控制向量u(t)也会趋近于0,意味着,随着时间的推移,需要对系统施加的控制量会越来越小,意味着使用最小的控制量使得系统达到了最终控制目标。

(2)Q,R矩阵的意义

一般来说,选取Q、R矩阵的时候,为了方便观察各个系统状态量而选取对角阵,增加Q的一个值,意味着这个值作用的系统状态量,将以更快的速度衰减到0,这时候,举个栗子还是很必要的,比如,Q ​
选取较大的值,会让x 很快的衰减到0;另外一方面,加大R的值,会使得对应的控制量减小,控制器执行更少的动作,意味着系统的状态衰减将变慢。所以,Q ,R的选取,要综合看具体的实际应用场景来调节

四、公式推导

在这里插入图片描述

4.1 将u带入cost函数

在这里插入图片描述

4.2 假定存在矩阵P

在这里插入图片描述

4.3 使能量函数值最小

在这里插入图片描述

4.4 对P进行微分展开

在这里插入图片描述
整理(8)式,可得到如下:
在这里插入图片描述

4.5 获取A,B,Q,P,K,R的等式

补充公式(3)源头

此步骤可以表示出,LQR控制的控制量是由状态量获取的,且控制量 u = - Kx
在这里插入图片描述
在这里插入图片描述
将(3)代入到(9)
在这里插入图片描述

4.6 配凑K与R,B,P关系

在这里插入图片描述

4.7 由A,B,Q,R已知量求得P,再求出K

(1)由A,B,Q,R已知量求得P
在这里插入图片描述
(2)由P求得K
在这里插入图片描述
(3)由K求得u控制量
在这里插入图片描述

五、总结

在这里插入图片描述

六、黎卡提方程求解

黎卡提方程求解.

参考链接

  1. https://blog.csdn.net/qq_24649627/article/details/104690279
  2. https://blog.csdn.net/zhouyy858/article/details/107606500
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值