pytorch-广播机制

Broadcasting

在这里插入图片描述

Key idea

A[4,3] B[3]

  • 在第一个维度前面插入一个维度 [3] => [1,3]
  • 将维度1扩展到与B维度1一样的尺寸 [1,3] => [4,3]

broadcasting = unsqueeze + expand
为什么要使用broadcasting?

1、for example

  • [class, student, scores]
  • add bias for every students: +5 cores
  • [4,32,8] + [4,32,8] 规则
  • [4,32,8] + [5.0] 实际

什么时候需要使用broadcasting?

例如:

A[4, 32 ,8] 4个班级32个学生八门课

B[1] => B[4, 32, 8] 给每一个学生每一门课加5分

B[8] = [0,0,5,0,0,0,0,0] => B[4, 32, 8] 给每一个学生的第三门课加5分

B[4] 无法广播自动扩展,因为维度对不上,产生歧义?

broadcasting如何扩展?

如果对应维度为1,则扩展到相同尺寸,如果对应没有维度,也扩展到相同尺寸,除此以外均无法扩展。match from last dim

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值