利用 AI 大模型完成个性化视频配音

部署运行你感兴趣的模型镜像

利用AI大模型实现个性化视频配音

image

  最近,我萌生了拍摄短视频的念头,希望通过这个平台与大家分享一些AI技术的实际应用。

  然而,在准备过程中,我遇到了一个难题——配音。

  家里的环境嘈杂,收音设备也不够专业,这让在录制配音时感到非常难受。

  一开始,我考虑使用机器配音来解决这个问题。然而,当我试听了一些机器音色后,发现它们的机器感太重,完全不像人类的声音。

  这种效果无法满足我对配音的幻想,让我感到非常失望。我甚至一度想要放弃这个想法。

  然而,就在我准备放弃的时候,

  突然想到,既然AI大模型支持语音识别,那肯定也有语音合成的模型吧。

  于是,我开始在网上搜索相关的信息,最终在阿里云百炼平台上找到了

  通义千问-语音合成CosyVoice大模型。

image

  经过试听,发现多个音色都符合我的要求,完全可以作为视频的配音。

  这让我非常兴奋,终于找到了解决配音问题的方法。

  经过多次试听,最终选择了“龙小淳”作为视频的音色,因为它听起来既自然又亲切,非常适合我的短视频风格。

image

  在选择好音色后,我准备根据文本生成配音。最开始,我想到用百炼平台提供的“自定义文本试听”功能来生成音频文件。然而,我发现这个功能有一个很大的限制——它限制了生成的字数,无法满足中长视频的要求。

  这让我非常沮丧,开始寻找其他方法。

  就在我陷入困境的时候,突然想到可以用API来生成音频

  这样就不会有字数限制了。说干就干,我打开VSCode,开始写一段Python代码来生成音频。

  在编写代码的过程中,遇到了一些问题,通过查阅相关文档和搜索网上的解决方案,成功地解决了这些问题。

  最终,我完成了视频的配音,效果非常满意。

  通过这次经历,深刻体会到了AI技术的强大和便捷。不仅解决了配音问题,还让我学到了很多新的知识和技能。

  我相信,在未来的日子里,我会继续探索和应用AI技术,为大家带来更多有趣和有价值的内容。

  ‍

  附代码和本文章的音频

# coding=utf-8

import dashscope
from dashscope.audio.tts_v2 import *

# 将your-dashscope-api-key替换成您自己的API-KEY
dashscope.api_key = "your-dashscope-api-key"
# 语音模型
model = "cosyvoice-v1"
# 音色
voice = "longxiaochun"

# 初始化
synthesizer = SpeechSynthesizer(model=model, voice=voice)
# 读取需要合成语音的文本文件
with open("1.txt", 'r', encoding='utf-8') as f:
    text_content = f.read()
# 开始合成语音
audio = synthesizer.call(text_content)
# 打印请求ID
print('requestId: ', synthesizer.get_last_request_id())
# 保存合成的语音到 合成结果.mp3 文件
with open('合成结果.mp3', 'wb') as f:
    f.write(audio)

您可能感兴趣的与本文相关的镜像

HunyuanVideo-Foley

HunyuanVideo-Foley

语音合成

HunyuanVideo-Foley是由腾讯混元2025年8月28日宣布开源端到端视频音效生成模型,用户只需输入视频和文字,就能为视频匹配电影级音效

基于实时迭代的数值鲁棒NMPC双模稳定预测模型(Matlab代码实现)内容概要:本文介绍了基于实时迭代的数值鲁棒非线性模型预测控制(NMPC)双模稳定预测模型的研究与Matlab代码实现,重点在于提升系统在存在不确定性与扰动情况下的控制性能与稳定性。该模型结合实时迭代优化机制,增强了传统NMPC的数值鲁棒性,并通过双模控制策略兼顾动态响应与稳态精度,适用于复杂非线性系统的预测控制问题。文中还列举了多个相关技术方向的应用案例,涵盖电力系统、路径规划、信号处理、机器学习等多个领域,展示了该方法的广泛适用性与工程价值。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事自动化、电气工程、智能制造、机器人控制等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于非线性系统的高性能预测控制设计,如电力系统调度、无人机控制、机器人轨迹跟踪等;②解决存在模型不确定性、外部扰动下的系统稳定控制问题;③通过Matlab仿真验证控制算法的有效性与鲁棒性,支撑科研论文复现与工程原型开发。; 阅读建议:建议读者结合提供的Matlab代码进行实践,重点关注NMPC的实时迭代机制与双模切换逻辑的设计细节,同时参考文中列举的相关研究方向拓展应用场景,强化对数值鲁棒性与系统稳定性之间平衡的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值