Coze扣子怎么使用更强大doubao1.5模型

最近,豆包刚刚发布了最新的doubao1.5系列模型,并且加量不加价。

在性能极大进步的情况下,价格还与之前一致。真是业界良心了。

在同样的价格下,肯定要使用性能更强大的模型嘛

于是我准备把所有的智能体和工作流切换到doubao1.5系列模型

但是我发现了一个新的问题,在切换过程中,找了好几次都没有发现doubao1.5系列的模型。

image

于是,我仔细研究了扣子的专业版开发文档,发现扣子不会自动开通新版模型,需要去火山引擎手动接入需要的模型。

下面,我们就开始为自己的扣子账号接入doubao1.5系列大模型。

首先,打开火山方舟管理控制台(https://console.volcengine.com/ark/region:ark+cn-beijing/endpoint)

image

选择“在线推理-创建推理接入点”

输入名称、选择模型

image

image

点击“确认接入”即可

如果提示“该模型暂未开通”

前往-“开通管理”

选择要使用的模型,点击开通即可

image

选择需要开通的模型,点击“立即开通”

等待几分钟,可以看到模型已经全部开通

image

此时回到扣子平台,可以看到新的模型都已经能选择使用了。

image

但需要注意的是,Doubao1.5Lite和Doubao1.5Pro均不支持Fuction Call,也就是不支持调用插件,在更换新模型时一定要注意,不要出现新模型用不了的情况。

期待后续版本的优化。

### 使用模型构建智能体的方法 构建基于大模型的智能体涉及多个技术环节,包括但不限于数据准备、模型选择与调优、交互设计以及实际应用场景的设计。以下是关于如何利用大模型来创建智能体的核心方法和技术要点: #### 数据准备 为了训练或微调适合特定场景的大模型,需要收集高质量的数据集作为输入[^1]。这些数据可以来源于公开资源或者企业内部积累的历史记录。对于某些特殊领域(如医疗诊断),可能还需要标注专家知识以提高准确性。 #### 模型选择与部署 目前市面上存在多种开源及商用的大规模预训练语言模型可供选用,例如阿里巴巴通义千问系列、百度文心一言等[^2]。开发者可以根据具体需求挑选合适的基座模型,并考虑是否对其进行进一步定制化调整。如果希望实现离线运行,则可以通过工具如Ollama完成本地环境下的模型加载和服务启动。 #### 对话管理机制 为了让智能体能够好地理解和回应用户的提问,在对话过程中引入记忆功能是非常重要的一步。这允许系统记住之前交流过的上下文信息从而给出加连贯自然的回答。 #### 工作流集成 除了基本的文字问答能力之外,很多情况下我们还期望智能体具备执行复杂任务的能力,比如自动化文档处理、客户服务支持等等。这就需要用到像Dify这样的框架帮助快速搭建起包含多步骤操作逻辑的工作流程定义。 ```python from langchain import PromptTemplate, LLMChain from langchain.llms import OpenAI # 定制提示模板 template = """Answer the following question using your knowledge about {subject}: {question} """ prompt = PromptTemplate(template=template, input_variables=["subject", "question"]) # 初始化链路并指定使用的LLM服务提供商 llm_chain = LLMChain(prompt=prompt, llm=OpenAI()) # 测试生成结果 response = llm_chain.run({"subject": "computer science", "question": "What is an algorithm?"}) print(response) ``` 上述代码片段展示了一个简单的例子,说明了如何借助LangChain库中的组件构造出针对某一主题领域的自动应答解决方案。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值