手把手带你学扣子Coze之工作流节点

在一个工作流中,你可以将另一个工作流作为其中的一个步骤或节点,实现复杂任务的自动化。

例如将常用的、标准化的任务处理流程封装为不同的子工作流,并在主工作流的不同分支内调用这些子工作流执行对应的操作。

工作流嵌套可实现复杂任务的模块化拆分和处理,使工作流编排逻辑更加灵活、清晰、更易于管理。

你可以把工作流想象成组装乐高。比如要造一辆玩具车,先拼好车轮(子工作流)、车身(另一个子工作流),最后组装成整车(主工作流)。每个零件都是独立的模块,需要时直接拿来用,这样整个搭建过程更简单有条理。遇到复杂任务时,拆分成多个现成的小任务组合起来,就像用现成的乐高模块拼大模型一样方便。

输入与输出

工作流节点的输入和输出结构取决于子工作流定义的输入输出结构,不支持自定义设置。

在工作流节点中你需要为必选的输入参数指定数据来源,支持设置为固定值或引用上游节点的输出参数。

我们可以用做菜来比喻理解:

  1. 每个做菜步骤(工作流节点)需要的材料和成品都是固定的,就像 "切菜" 步骤必须要有菜刀和蔬菜,产出切好的菜(输入输出结构固定)。

  2. 必须准备的物品(必选参数)有两种获取方式:

  • 自己带(固定值):比如规定必须用 3 克盐

  • 用前面步骤的成品(引用上游):比如用 "煮面" 步骤煮好的面条

你不能自己发明新的材料要求,比如突然要求切菜步骤需要用到烤箱,这是不允许的(不支持自定义设置)。

让我们来实际操作一下吧~

打开一个新的工作流,并点击【添加节点】

点击【工作流】节点

选择要添加的工作流,并点击【添加】

我这里以发送飞书消息为例,每次点击都会发送一条消息

这是运行工作流需要的参数,按要求设置一个。

并运行工作流

可以看到,这个发送消息的工作流运行成功!

 

文章转载自:https://gwl1554ppni.feishu.cn/wiki/G8YSwgk7MiW7rbkxCLcc35VjnPf
欢迎关注公众号【AI技术开发者】
 

 

<think>好的,我现在需要帮助用户了解如何在Coze平台上创建包含HTTP节点工作流。首先,我应该回忆一下之前提供的引用内容,看看有没有相关信息。引用[1]提到在Coze创建工作流的体验不错,虽然前期创建插件有点痛苦,但工作流部分很受欢迎。引用[2]和[3]则展示了用户如何通过工作流生成有声绘本或自动总结网页内容,这说明工作流可以集成外部服务。 接下来,我需要根据这些信息构建一个步骤指南。用户需要具体的教程,所以应该分步骤说明,可能包括进入工作流界面、添加HTTP节点、配置参数、测试和发布等步骤。同时,需要结合引用中的例子,比如调用开放平台接口,类似引用[1]中提到的,这样用户能更直观地理解。 需要注意的是,用户可能对HTTP节点的配置不太熟悉,比如如何填写URL、请求方法、参数和头部信息,以及如何处理响应。因此,每个步骤要详细,可能还需要举例说明,比如引用[3]中的网页总结例子,说明如何将HTTP请求的结果用于后续节点。 另外,要确保语言简洁,避免使用技术术语过多,必要时提供注意事项,比如错误处理和测试的重要性。最后,生成的相关问题应该围绕常见疑问,比如性能优化、调试方法、与其他平台的比较,以及实际应用案例,这些都能帮助用户深入理解。</think>以下是关于在Coze平台构建包含HTTP节点工作流的详细教程,结合平台特性及实际应用场景说明: --- ### 步骤1:进入工作流编辑界面 1. 在Coze平台创建或打开一个已有Bot 2. 点击「工作流」标签页,选择「新建工作流」 3. 从左侧节点库拖拽「HTTP请求」节点到画布[^1] --- ### 步骤2:配置HTTP节点参数 ```python # 示例:调用天气API的HTTP配置 { "url": "https://api.weather.com/v3/wx/forecast", "method": "GET", "params": { "location": "{{input.location}}", // 引用用户输入参数 "apiKey": "your_api_key_here" }, "headers": { "Content-Type": "application/json" } } ``` * 参数说明: - URL:填写目标API地址 - 请求方法:GET/POST/PUT等 - 动态参数:通过`{{}}`语法引用前序节点的输出 - 认证信息:在Header或Params中添加API密钥[^3] --- ### 步骤3:处理响应数据 1. 添加「条件判断」节点处理HTTP状态码 - 200:继续执行 - 4xx/5xx:跳转到错误处理分支 2. 使用「数据解析」节点处理JSON/XML响应 ```python # 示例:提取天气数据 parsed_data = { "temperature": response.json().get('current').get('temp'), "conditions": response.json().get('current').get('weather') } ``` --- ### 步骤4:连接其他功能节点 1. 将解析后的数据接入: - 自然语言生成节点:生成天气播报文本 - 数据库节点:存储历史记录 - 条件分支节点:根据温度触发不同提醒[^2] --- ### 步骤5:测试与发布 1. 点击「测试」按钮发送模拟请求 2. 使用「Debug模式」查看各节点数据流 3. 通过「版本管理」发布更新 --- ### 实际应用案例 引用[3]中提到的网页总结工作流可通过以下流程实现: ``` 用户输入URL -> HTTP请求获取网页内容 -> 文本解析 -> AI总结 -> 生成思维导图链接 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值