手把手带你学扣子Coze之数据库节点

数据库节点用于对指定数据库进行常见的 SQL 操作。

输入

节点的输入参数,即 SQL 语句中需要使用的参数,可以设置为固定值,也可以引用上游节点的输出参数。

你可以把节点想象成做菜步骤,输入参数就是做菜需要的材料。比如做西红柿炒蛋:

1️⃣ 材料可以是固定值(自己准备的):"盐 3 克","鸡蛋 2 个"

2️⃣ 也可以借用前一步的结果:比如前一步煮面的 "煮面汤 200ml",直接拿来当炒菜的汤底用

这样后面的步骤就能自动使用前面步骤准备好的材料,不用每次都重新准备啦~

数据表

在数据表区域,你需要根据页面提示添加需要操作的数据表,一个数据库节点最多可添加一个数据表。

在调试期间,数据库节点显示和使用的是数据表的测试数据,而非数据库中的真实线上数据。单击数据表或单击查看数据,弹出数据表的详情页,可查看此数据表的测试数据。你可以手动添加或修改测试数据,也可以试运行数据库节点,通过 SQL 语句插入或修改数据。

这就像你在操作一个练习厨房:

1️⃣ 选菜板:每个灶台只能放 1 个菜板(数据表),选好后系统会给你配练习食材(测试数据)

2️⃣ 试做环节:你可以:

  • 直接往菜板加练习食材(手动修改测试数据)

  • 用菜谱(SQL 语句)试炒菜(试运行节点)

  • 尝味道调整(查看修改后的数据)

3️⃣ 真实厨房隔离:所有操作都在练习厨房完成,不会弄乱真实的厨房(线上数据安全)

就像先用仿真食材练习做菜,确认没问题后再去真实厨房操作~

SQL

在 SQL 区域输入需要对数据表执行的 SQL 操作,兼容 SQL92 的常用语法。SQL 语句中可以引用数据库节点输入参数中定义的变量,引用格式为 {{变量名}}。

  • 不支持 Select* 语法、多表 Join 操作。

  • 每次执行数据库节点,最多返回 100 行数据。

你可以自行编写 SQL 语句,也可以根据页面提示由 AI 帮你生成一段

检查无误后,点击【使用】。

但是,这里AI生成的代码是有问题的,扣子不支持 Select* 语法。所以我再优化了一下查询语句。

在语句中,同样可以使用变量

输出

数据库节点的输出参数是 SQL 执行后的输出内容,固定为以下两项:

  • outputList:SQL 执行后数据表中的字段和数据。你可以按需新增子项,注意变量名需与 SQL 中定义的字段名一致、数据类型需要和数据表中定义的数据类型一致。

  • rowNum:返回的行数或者受影响的行数。

 

在outputList变量中添加子项后,节点只返回子项的内容。

如果没定义,则返回所有内容

这就像超市购物清单功能:

1️⃣ 带清单购物(定义 outputList):

  • 你提前在清单写了 "鸡蛋、牛奶"(添加子项)

  • 收银员只打包你清单上的东西(返回子项内容)

2️⃣ 空手购物(不定义):

  • 收银员默认把你购物车所有东西打包(返回全部内容)

小提示:如果发现数据变少,检查是否漏写清单内容;需要完整数据时别带清单~

成功查询出数据。

注意:

  • 开发调试阶段不会改动数据库原表,在调试区查看到的是测试数据,和数据库中的真实数据是隔离的。

  • 在工作流中调试数据库节点时,不能使用库数据表中的真实数据,需要先插入数据后再进行查、删、改等操作的测试。

 

文章转载自:https://gwl1554ppni.feishu.cn/wiki/G8YSwgk7MiW7rbkxCLcc35VjnPf
欢迎关注公众号【AI技术开发者】

 

### Coze 文本处理节点的功能与配置 Coze 是一种基于低代码场景设计的 AI 工具,其核心功能在于通过自动化任务执行来简化复杂的工作流[^2]。在 Coze 中,“文本处理节点”是一种专门用于处理字符串数据的操作单元。它能够完成诸如提取子串、替换字符、正则匹配等多种常见文本操作。 以下是有关 Coze 文本处理节点的一些关键概念及其配置方法: #### 1. **基本功能** 文本处理节点支持多种常见的文本操作,包括但不限于: - 字符串截取:指定起始位置和长度以获取部分字符串。 - 替换操作:将特定模式的文本替换成其他内容。 - 正则表达式匹配:利用正则表达式查找符合条件的内容并返回结果。 这些功能使得开发者可以灵活地对输入的数据进行预处理或转换[^1]。 #### 2. **参数设置** 当创建一个新的文本处理节点时,通常需要定义以下几个主要参数: - 输入字段 (Input Field): 指定待处理的目标文本来源。 - 输出字段 (Output Field): 定义经过处理后的文本存储的位置。 - 处理逻辑 (Processing Logic): 描述具体要实施的动作类型以及任何附加选项(比如大小写敏感度或者边界条件)。 例如,在实际应用过程中如果希望把所有的英文字母都变成大写字母,则可以在该模块内部设定相应的规则如下所示: ```python text.upper() ``` 此段脚本会告诉系统采用 Python 的内置函数 `upper()` 来实现这一目标。 #### 3. **高级特性** 除了基础的文字编辑外,某些版本可能还提供了更复杂的自然语言理解(NLU)服务作为扩展插件之一。这意味着不仅可以简单的语法修正, 还能深入分析语句含义从而出更加智能化的回答或是建议。 对于想要充分利用这项技术优势的人来说,了解如何正确安装额外组件就显得尤为重要了。一般而言这涉及到下载官方发布的最新包文件然后按照说明书指示一步步来进行部署即可完成整个过程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值