求导方法-基本导数表

求导方法中的基本导数表列出了常见函数的导数公式。掌握这些基本导数公式可以简化求导过程。以下是常见函数的基本导数表:

1. 常数函数

d d x [ c ] = 0 (其中  c  是常数) \frac{d}{dx} [c] = 0 \quad \text{(其中 } c \text{ 是常数)} dxd[c]=0(其中 c 是常数)

2. 幂函数

d d x [ x n ] = n x n − 1 (其中  n  是实数) \frac{d}{dx} [x^n] = n x^{n-1} \quad \text{(其中 } n \text{ 是实数)} dxd[xn]=nxn1(其中 n 是实数)

3. 指数函数

d d x [ e x ] = e x \frac{d}{dx} [e^x] = e^x dxd[ex]=ex

d d x [ a x ] = a x ln ⁡ a (其中  a > 0  且  a ≠ 1 ) \frac{d}{dx} [a^x] = a^x \ln a \quad \text{(其中 } a > 0 \text{ 且 } a \neq 1 \text{)} dxd[ax]=axlna(其中 a>0  a=1

4. 对数函数

d d x [ ln ⁡ x ] = 1 x (其中  x > 0 ) \frac{d}{dx} [\ln x] = \frac{1}{x} \quad \text{(其中 } x > 0 \text{)} dxd[lnx]=x1(其中 x>0

d d x [ log ⁡ a x ] = 1 x ln ⁡ a (其中  a > 0  且  a ≠ 1 ) \frac{d}{dx} [\log_a x] = \frac{1}{x \ln a} \quad \text{(其中 } a > 0 \text{ 且 } a \neq 1 \text{)} dxd[logax]=xlna1(其中 a>0  a=1

5. 三角函数

d d x [ sin ⁡ x ] = cos ⁡ x \frac{d}{dx} [\sin x] = \cos x dxd[sinx]=cosx

d d x [ cos ⁡ x ] = − sin ⁡ x \frac{d}{dx} [\cos x] = -\sin x dxd[cosx]=sinx

d d x [ tan ⁡ x ] = sec ⁡ 2 x \frac{d}{dx} [\tan x] = \sec^2 x dxd[tanx]=sec2x

d d x [ cot ⁡ x ] = − csc ⁡ 2 x \frac{d}{dx} [\cot x] = -\csc^2 x dxd[cotx]=csc2x

d d x [ sec ⁡ x ] = sec ⁡ x tan ⁡ x \frac{d}{dx} [\sec x] = \sec x \tan x dxd[secx]=secxtanx

d d x [ csc ⁡ x ] = − csc ⁡ x cot ⁡ x \frac{d}{dx} [\csc x] = -\csc x \cot x dxd[cscx]=cscxcotx

6. 反三角函数

d d x [ arcsin ⁡ x ] = 1 1 − x 2 (其中  − 1 < x < 1 ) \frac{d}{dx} [\arcsin x] = \frac{1}{\sqrt{1 - x^2}} \quad \text{(其中 } -1 < x < 1 \text{)} dxd[arcsinx]=1x2 1(其中 1<x<1

d d x [ arccos ⁡ x ] = − 1 1 − x 2 (其中  − 1 < x < 1 ) \frac{d}{dx} [\arccos x] = -\frac{1}{\sqrt{1 - x^2}} \quad \text{(其中 } -1 < x < 1 \text{)} dxd[arccosx]=1x2 1(其中 1<x<1

d d x [ arctan ⁡ x ] = 1 1 + x 2 \frac{d}{dx} [\arctan x] = \frac{1}{1 + x^2} dxd[arctanx]=1+x21

d d x [ arccot  x ] = − 1 1 + x 2 \frac{d}{dx} [\text{arccot } x] = -\frac{1}{1 + x^2} dxd[arccot x]=1+x21

d d x [ arcsec  x ] = 1 ∣ x ∣ x 2 − 1 (其中  ∣ x ∣ > 1 ) \frac{d}{dx} [\text{arcsec } x] = \frac{1}{|x| \sqrt{x^2 - 1}} \quad \text{(其中 } |x| > 1 \text{)} dxd[arcsec x]=xx21 1(其中 x>1

d d x [ arccsc  x ] = − 1 ∣ x ∣ x 2 − 1 (其中  ∣ x ∣ > 1 ) \frac{d}{dx} [\text{arccsc } x] = -\frac{1}{|x| \sqrt{x^2 - 1}} \quad \text{(其中 } |x| > 1 \text{)} dxd[arccsc x]=xx21 1(其中 x>1

7. 双曲函数

d d x [ sinh ⁡ x ] = cosh ⁡ x \frac{d}{dx} [\sinh x] = \cosh x dxd[sinhx]=coshx

d d x [ cosh ⁡ x ] = sinh ⁡ x \frac{d}{dx} [\cosh x] = \sinh x dxd[coshx]=sinhx

d d x [ tanh ⁡ x ] = sech 2 x \frac{d}{dx} [\tanh x] = \text{sech}^2 x dxd[tanhx]=sech2x

d d x [ coth ⁡ x ] = − csch 2 x \frac{d}{dx} [\coth x] = -\text{csch}^2 x dxd[cothx]=csch2x

d d x [ sech  x ] = − sech  x tanh ⁡ x \frac{d}{dx} [\text{sech } x] = -\text{sech } x \tanh x dxd[sech x]=sech xtanhx

d d x [ csch  x ] = − csch  x coth ⁡ x \frac{d}{dx} [\text{csch } x] = -\text{csch } x \coth x dxd[csch x]=csch xcothx

8. 反双曲函数

d d x [ arsinh  x ] = 1 x 2 + 1 \frac{d}{dx} [\text{arsinh } x] = \frac{1}{\sqrt{x^2 + 1}} dxd[arsinh x]=x2+1 1

d d x [ arcosh  x ] = 1 x 2 − 1 (其中  x > 1 ) \frac{d}{dx} [\text{arcosh } x] = \frac{1}{\sqrt{x^2 - 1}} \quad \text{(其中 } x > 1 \text{)} dxd[arcosh x]=x21 1(其中 x>1

d d x [ artanh  x ] = 1 1 − x 2 (其中  ∣ x ∣ < 1 ) \frac{d}{dx} [\text{artanh } x] = \frac{1}{1 - x^2} \quad \text{(其中 } |x| < 1 \text{)} dxd[artanh x]=1x21(其中 x<1

d d x [ arcoth  x ] = 1 1 − x 2 (其中  ∣ x ∣ > 1 ) \frac{d}{dx} [\text{arcoth } x] = \frac{1}{1 - x^2} \quad \text{(其中 } |x| > 1 \text{)} dxd[arcoth x]=1x21(其中 x>1

d d x [ arsech  x ] = − 1 x 1 − x 2 (其中  0 < x < 1 ) \frac{d}{dx} [\text{arsech } x] = -\frac{1}{x \sqrt{1 - x^2}} \quad \text{(其中 } 0 < x < 1 \text{)} dxd[arsech x]=x1x2 1(其中 0<x<1

d d x [ arcsch  x ] = − 1 ∣ x ∣ 1 + x 2 (其中  x ≠ 0 ) \frac{d}{dx} [\text{arcsch } x] = -\frac{1}{|x| \sqrt{1 + x^2}} \quad \text{(其中 } x \neq 0 \text{)} dxd[arcsch x]=x1+x2 1(其中 x=0

9. 总结

基本导数表是求导的基础工具,熟练掌握这些公式可以大大简化求导过程。在实际应用中,通常需要结合求导法则(如链式法则、乘积法则、商法则等)来求解更复杂的函数的导数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值