求导方法中的基本导数表列出了常见函数的导数公式。掌握这些基本导数公式可以简化求导过程。以下是常见函数的基本导数表:
1. 常数函数
d d x [ c ] = 0 (其中 c 是常数) \frac{d}{dx} [c] = 0 \quad \text{(其中 } c \text{ 是常数)} dxd[c]=0(其中 c 是常数)
2. 幂函数
d d x [ x n ] = n x n − 1 (其中 n 是实数) \frac{d}{dx} [x^n] = n x^{n-1} \quad \text{(其中 } n \text{ 是实数)} dxd[xn]=nxn−1(其中 n 是实数)
3. 指数函数
d d x [ e x ] = e x \frac{d}{dx} [e^x] = e^x dxd[ex]=ex
d d x [ a x ] = a x ln a (其中 a > 0 且 a ≠ 1 ) \frac{d}{dx} [a^x] = a^x \ln a \quad \text{(其中 } a > 0 \text{ 且 } a \neq 1 \text{)} dxd[ax]=axlna(其中 a>0 且 a=1)
4. 对数函数
d d x [ ln x ] = 1 x (其中 x > 0 ) \frac{d}{dx} [\ln x] = \frac{1}{x} \quad \text{(其中 } x > 0 \text{)} dxd[lnx]=x1(其中 x>0)
d d x [ log a x ] = 1 x ln a (其中 a > 0 且 a ≠ 1 ) \frac{d}{dx} [\log_a x] = \frac{1}{x \ln a} \quad \text{(其中 } a > 0 \text{ 且 } a \neq 1 \text{)} dxd[logax]=xlna1(其中 a>0 且 a=1)
5. 三角函数
d d x [ sin x ] = cos x \frac{d}{dx} [\sin x] = \cos x dxd[sinx]=cosx
d d x [ cos x ] = − sin x \frac{d}{dx} [\cos x] = -\sin x dxd[cosx]=−sinx
d d x [ tan x ] = sec 2 x \frac{d}{dx} [\tan x] = \sec^2 x dxd[tanx]=sec2x
d d x [ cot x ] = − csc 2 x \frac{d}{dx} [\cot x] = -\csc^2 x dxd[cotx]=−csc2x
d d x [ sec x ] = sec x tan x \frac{d}{dx} [\sec x] = \sec x \tan x dxd[secx]=secxtanx
d d x [ csc x ] = − csc x cot x \frac{d}{dx} [\csc x] = -\csc x \cot x dxd[cscx]=−cscxcotx
6. 反三角函数
d d x [ arcsin x ] = 1 1 − x 2 (其中 − 1 < x < 1 ) \frac{d}{dx} [\arcsin x] = \frac{1}{\sqrt{1 - x^2}} \quad \text{(其中 } -1 < x < 1 \text{)} dxd[arcsinx]=1−x21(其中 −1<x<1)
d d x [ arccos x ] = − 1 1 − x 2 (其中 − 1 < x < 1 ) \frac{d}{dx} [\arccos x] = -\frac{1}{\sqrt{1 - x^2}} \quad \text{(其中 } -1 < x < 1 \text{)} dxd[arccosx]=−1−x21(其中 −1<x<1)
d d x [ arctan x ] = 1 1 + x 2 \frac{d}{dx} [\arctan x] = \frac{1}{1 + x^2} dxd[arctanx]=1+x21
d d x [ arccot x ] = − 1 1 + x 2 \frac{d}{dx} [\text{arccot } x] = -\frac{1}{1 + x^2} dxd[arccot x]=−1+x21
d d x [ arcsec x ] = 1 ∣ x ∣ x 2 − 1 (其中 ∣ x ∣ > 1 ) \frac{d}{dx} [\text{arcsec } x] = \frac{1}{|x| \sqrt{x^2 - 1}} \quad \text{(其中 } |x| > 1 \text{)} dxd[arcsec x]=∣x∣x2−11(其中 ∣x∣>1)
d d x [ arccsc x ] = − 1 ∣ x ∣ x 2 − 1 (其中 ∣ x ∣ > 1 ) \frac{d}{dx} [\text{arccsc } x] = -\frac{1}{|x| \sqrt{x^2 - 1}} \quad \text{(其中 } |x| > 1 \text{)} dxd[arccsc x]=−∣x∣x2−11(其中 ∣x∣>1)
7. 双曲函数
d d x [ sinh x ] = cosh x \frac{d}{dx} [\sinh x] = \cosh x dxd[sinhx]=coshx
d d x [ cosh x ] = sinh x \frac{d}{dx} [\cosh x] = \sinh x dxd[coshx]=sinhx
d d x [ tanh x ] = sech 2 x \frac{d}{dx} [\tanh x] = \text{sech}^2 x dxd[tanhx]=sech2x
d d x [ coth x ] = − csch 2 x \frac{d}{dx} [\coth x] = -\text{csch}^2 x dxd[cothx]=−csch2x
d d x [ sech x ] = − sech x tanh x \frac{d}{dx} [\text{sech } x] = -\text{sech } x \tanh x dxd[sech x]=−sech xtanhx
d d x [ csch x ] = − csch x coth x \frac{d}{dx} [\text{csch } x] = -\text{csch } x \coth x dxd[csch x]=−csch xcothx
8. 反双曲函数
d d x [ arsinh x ] = 1 x 2 + 1 \frac{d}{dx} [\text{arsinh } x] = \frac{1}{\sqrt{x^2 + 1}} dxd[arsinh x]=x2+11
d d x [ arcosh x ] = 1 x 2 − 1 (其中 x > 1 ) \frac{d}{dx} [\text{arcosh } x] = \frac{1}{\sqrt{x^2 - 1}} \quad \text{(其中 } x > 1 \text{)} dxd[arcosh x]=x2−11(其中 x>1)
d d x [ artanh x ] = 1 1 − x 2 (其中 ∣ x ∣ < 1 ) \frac{d}{dx} [\text{artanh } x] = \frac{1}{1 - x^2} \quad \text{(其中 } |x| < 1 \text{)} dxd[artanh x]=1−x21(其中 ∣x∣<1)
d d x [ arcoth x ] = 1 1 − x 2 (其中 ∣ x ∣ > 1 ) \frac{d}{dx} [\text{arcoth } x] = \frac{1}{1 - x^2} \quad \text{(其中 } |x| > 1 \text{)} dxd[arcoth x]=1−x21(其中 ∣x∣>1)
d d x [ arsech x ] = − 1 x 1 − x 2 (其中 0 < x < 1 ) \frac{d}{dx} [\text{arsech } x] = -\frac{1}{x \sqrt{1 - x^2}} \quad \text{(其中 } 0 < x < 1 \text{)} dxd[arsech x]=−x1−x21(其中 0<x<1)
d d x [ arcsch x ] = − 1 ∣ x ∣ 1 + x 2 (其中 x ≠ 0 ) \frac{d}{dx} [\text{arcsch } x] = -\frac{1}{|x| \sqrt{1 + x^2}} \quad \text{(其中 } x \neq 0 \text{)} dxd[arcsch x]=−∣x∣1+x21(其中 x=0)
9. 总结
基本导数表是求导的基础工具,熟练掌握这些公式可以大大简化求导过程。在实际应用中,通常需要结合求导法则(如链式法则、乘积法则、商法则等)来求解更复杂的函数的导数。