自动驾驶感知论文复现-HybridNets(含bug解决)

本文详细介绍了复现自动驾驶感知论文《HybridNets: End-to-End Perception Network》的过程,从环境搭建、预训练权重问题解决到模型训练。在环境搭建中,特别提醒了torch和torchvision需匹配CUDA版本。在demo检测部分,解决了图像和视频运行时的错误。最后,提供了数据集准备和训练的步骤。
摘要由CSDN通过智能技术生成

目录

一、环境搭建

二、demo检测

2.1.图像demo

2.2视频demo

三、训练

3.1.准备数据集

3.2创建yml文件并更改路径

3.3训练

四、附录

论文题目:《HybridNets: End-to-End Perception Network》

论文链接:HybridNets

代码链接:Github工程代码

论文摘要:

        端到端网络在多任务处理中变得越来越重要。其中一个突出的例子是驾驶感知系统在自动驾驶中的重要性日益增加。本文系统地研究了一个端到端多任务感知网络,并提出了几个关键的优化方法来提高准确率。首先,提出了基于加权双向特征网络的高效分割头和盒/类预测网络;其次,提出了加权双向特征网络中每个层次的自动自定义锚点;第三,提出了一种有效的训练损失函数和训练策略来平衡和优化网络。基于这些优化,我们开发了一个端到端感知网络,可以同时执行多任务,包括交通目标检测、可驾驶区域分割和车道检测,称为HybridNets,其准确性优于现有技术。特别是,HybridNets在Berkeley DeepDrive数据集上的平均精度达到77.3,优于车道检测,平均交叉口超过Union 31.6,参数1283万个,浮点运算156亿次。此外,它可以实时执行视觉感知任务,是解决多任务问题的一种实用而准确的方法。

模型结构图:

一、环境搭建

首先window+R输入cmd进入:

创建环境:

conda create -n hyb python=3.8

激活环境:

conda activate hyb

注意!!requirments中的torch和torchvision下载完后为cpu版本,不能用!!

此时,有一种方法,先下requirements中的包,然后卸载torch和torchvison,然后下载对应cuda版本的gpu的torch和torchvison。

pip install -r requirements.txt -i https://mirrors.bfsu.edu.cn/pypi/web/simple/
<
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值