目录
论文题目:《HybridNets: End-to-End Perception Network》
论文链接:HybridNets
代码链接:Github工程代码
论文摘要:
端到端网络在多任务处理中变得越来越重要。其中一个突出的例子是驾驶感知系统在自动驾驶中的重要性日益增加。本文系统地研究了一个端到端多任务感知网络,并提出了几个关键的优化方法来提高准确率。首先,提出了基于加权双向特征网络的高效分割头和盒/类预测网络;其次,提出了加权双向特征网络中每个层次的自动自定义锚点;第三,提出了一种有效的训练损失函数和训练策略来平衡和优化网络。基于这些优化,我们开发了一个端到端感知网络,可以同时执行多任务,包括交通目标检测、可驾驶区域分割和车道检测,称为HybridNets,其准确性优于现有技术。特别是,HybridNets在Berkeley DeepDrive数据集上的平均精度达到77.3,优于车道检测,平均交叉口超过Union 31.6,参数1283万个,浮点运算156亿次。此外,它可以实时执行视觉感知任务,是解决多任务问题的一种实用而准确的方法。
模型结构图:
一、环境搭建
首先window+R输入cmd进入:
创建环境:
conda create -n hyb python=3.8
激活环境:
conda activate hyb
注意!!requirments中的torch和torchvision下载完后为cpu版本,不能用!!
此时,有一种方法,先下requirements中的包,然后卸载torch和torchvison,然后下载对应cuda版本的gpu的torch和torchvison。
pip install -r requirements.txt -i https://mirrors.bfsu.edu.cn/pypi/web/simple/
<