BSM期权定价

本文深入探讨了股票价格过程,包括马尔可夫过程、维纳过程和伊藤过程,并详细阐述了伊藤引理。接着,重点介绍了布莱克-斯科尔斯-默顿期权定价公式,讲解了股票价格服从的分布、定价公式推导、隐含波动率的计算。此外,还讨论了有股息时期权的价格,分别分析了欧式期权和美式期权的情况。
摘要由CSDN通过智能技术生成

维纳过程与伊藤引理

马尔可夫过程

马尔可夫过程是指标的变量的当前值与未来的预测有关,变量的历史及从过去到现在的演变方式与未来的预测无关。股价通常被假设为服从markov过程,这与弱市场有效性一致,弱市场有效性指出,一种股票的当前价格包含过去价格的所有信息。

维纳过程

维纳过程(Wiener process)也叫布朗运动,是一种期望为0,方差为1的马尔可夫过程。

如果变量 z z z满足下面两个条件,那么称 z z z服从维纳过程:

  1. 变化量 Δ z \Delta{z} Δz与时间区间 Δ t \Delta{t} Δt满足: Δ z = ϵ Δ t \Delta{z}=\epsilon\sqrt{\Delta{t}} Δz=ϵΔt ϵ \epsilon ϵ服从标准正态分布
  2. 在任意两个不重叠的 Δ t \Delta{t} Δt时间区间内,变化量 Δ z \Delta{z} Δz相互独立

广义维纳过程

x x x服从广义维纳过程,如果:
d x = a d t + b d z \mathrm{d}x=a\mathrm{d}t+b\mathrm{d}z dx=adt+bdz
其中: z z z为维纳过程, a , b a,b a,b为常数

伊藤过程

x x x服从伊藤过程,如果:
d x = a ( x , t ) d t + b ( x , t ) d z \mathrm{d}x=a(x,t)\mathrm{d}t+b(x,t)\mathrm{d}z dx=a(x,t)dt+b(x,t)dz
其中: z z z为维纳过程, a ( x , t ) , b ( x , t ) a(x,t),b(x,t) a(x,t),b(x,t) x , t x,t x,t的函数

股票价格的过程

股票在 t t t时刻价格为 S S S,股票漂移率为 μ S \mu S μS μ \mu μ为股票期望收益率,在 Δ t \Delta{t} Δt时间内, S S S的增量为 μ S Δ t \mu S\Delta{t} μSΔt

如果 Δ z = 0 \Delta{z}=0 Δz=0,则:
Δ S = μ S Δ t Δ t → 0 , d S S = μ d t \Delta{S}=\mu S\Delta{t}\\ \Delta{t}\rightarrow0, \frac{\mathrm{d}S}{S}=\mu \mathrm{d}t ΔS=μSΔtΔt0,SdS=μdt
[ 0 , T ] [0,T] [0,T] t t t积分得:
S T = S 0 e μ T S_T=S_0e^{\mu T} ST=S0eμT
但是通常 d z ≠ 0 \mathrm{d}z\neq0 dz=0,通常认为股价波动率 σ \sigma σ与股价成正比,所以股价应当服从广义维纳过程:
d S = μ S d t + σ S d z \mathrm{d}S=\mu S\mathrm{d}t+\sigma S\mathrm{d}z dS=μSdt+σSdz
这是描述股价最广泛的模型

伊藤引理

以股票为标的的衍生品的价格 G G G是关于股票价格 S S S和时间 t t t的函数。更一般地,任意一种衍生品的价格都是标的物产品随机变量和时间的函数。

所以价格 G G G服从伊藤过程:
d G = ( ∂ G ∂ S μ S + ∂ G ∂ t + 1 2 ∂ 2 G ∂ S 2 σ 2 S 2 ) d t + ∂ G ∂ S σ S d z \mathrm{d}G=\left(\frac{\partial{G}}{\partial{S}}\mu S+\frac{\partial{G}}{\partial{t}}+\frac{1}{2}\frac{\partial^2{G}}{\partial{S^2}}\sigma^2S^2\right)\mathrm{d}t+\frac{\partial{G}}{\partial{S}}\sigma S\mathrm{d}z dG=(SGμS+tG+21S22Gσ2S2)dt+SGσSdz

布莱克-斯科尔斯-默顿期权定价公式

股票价格服从的分布

股票价格服从广义维纳过程,离散形式为:
Δ S = μ S Δ t + σ S ϵ Δ t \Delta S=\mu S\Delta t+\sigma S\epsilon\sqrt{\Delta t} ΔS=μSΔt+σSϵΔt
由于 ϵ ∼ N ( 0 , 1 ) \epsilon\sim{N(0,1)} ϵN(0,1),所以:
Δ S S ∼ N ( μ Δ t , σ 2 Δ t ) \frac{\Delta S}{S}\sim{N(\mu\Delta t,\sigma^2\Delta t)} SΔSN(μΔt,σ2Δt)
G = ln ⁡ S G=\ln S G=lnS,有:
∂ G ∂ S = 1 S , ∂ 2 G ∂ S 2

  • 0
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值