金融工程学(十):期权定价1

期权定价1

如果一个变量的值以某种不确定的形式随时间变化,我们称这个变量服从某种随机过程。随机过程可以分为离散时间连续时间两类:一个离散时间随机过程是指变量值只能在某些确定的时间点上变化,而一个连续时间随机过程是指变量值可以在任何时刻上变化。随机过程也可以分为连续变量离散变量两类。在连续变量过程中,标的变量可以取某一范围内的任何值,而在离散变量过程中,标的变量只能取某些离散值。

马尔科夫性:马尔科夫过程是特殊的随机过程,其中只有标的变量的当前值与未来的预测有关,而变量的历史值以及变量从过去到现在的演变方式与未来的预测无关。

股票价格的马尔科夫性质与弱性市场有效性是一致的。弱性市场有效性指出,股票的当前价格包含了过去价格的所有信息。

弱势效率市场:证券价格变动的历史不包含任何对预测证券价格未来变动有用的信息,也就是说不能通过技术分析获得超过平均收益率的收益。

股票价格的变化过程

人们通常用形如
d S t S t = μ d t + σ d z t \frac{dS_t}{S_t}=\mu dt+\sigma dz_t StdSt=μdt+σdzt
的几何布朗运动来描绘股票价格的变化过程,这是B-S-M期权定价模型的基础性假设。

标准布朗运动

  1. B 0 = 0 B_0=0 B0=0
  2. 对任意 t , s , s > t , B s − B t ∼ N ( 0 , s − t ) t,s,s>t,B_s-B_t\sim N(0,s-t) t,s,s>t,BsBtN(0,st)
  3. 对任意 0 ≤ t 0 < t 1 < ⋯ < t n < ∞ , B ( t 0 ) , B ( t 1 ) − B ( t 0 ) , ⋯   , B ( t n ) − B ( t n − 1 ) 0\leq t_0<t_1<\cdots<t_n<\infin,B(t_0),B(t_1)-B(t_0),\cdots,B(t_n)-B(t_{n-1}) 0t0<t1<<tn<,B(t0),B(t1)B(t0),,B(tn)B(tn1) 独立
  4. 对任意 ω \omega ω,样本轨道 t → B ( ω , t ) t\to B(\omega,t) tB(ω,t) 连续

标准布朗运动具有以下两个特征:

  1. 独立增量,对于任何两个不重合的时间间隔,变量 z t z_t zt 的增量相互独立
  2. 在任意小的时间间隔 Δ t \Delta t Δt 内,变量 z t z_t zt 的增量均服从均值为零、方差等于时间长度的正态分布。

d z t = ε t d t Δ z t = ε t Δ t dz_t=\varepsilon_t\sqrt{dt}\\\Delta z_t=\varepsilon_t\sqrt{\Delta t} dzt=εtdt Δzt=εtΔt

其中 ε ∼ Φ ( 0 , 1 ) \varepsilon\sim\Phi(0,1) εΦ(0,1),服从标准正态分布。显然, Δ z t ∼ N ( 0 , Δ t ) \Delta z_t\sim N(0,\Delta t) ΔztN(0,Δt)

对于任意两个时刻 T , t , T > t T,t,T>t T,t,T>t,将这段较长的时间分成 N N N 个小时间间隔, z T − z t z_T-z_t zTzt 显然可以看作每个小时间间隔内 z t z_t zt 增量之和,即:
z T − z t = ∑ i = 1 N ε i Δ t i E ( z T − z t ) = 0 V a r ( z T − z t ) = ∑ i = 1 N Δ t = T − t z_T-z_t=\sum_{i=1}^N\varepsilon_i\sqrt{\Delta t_i}\\E(z_T-z_t)=0\\Var(z_T-z_t)=\sum_{i=1}^N\Delta t=T-t zTzt=i=1NεiΔti E(zTzt)=0Var(zTzt)=i=1NΔt=Tt
所以, z T − z t ∼ N ( 0 , T − t ) z_T-z_t\sim N(0,T-t) zTztN(0,Tt)

一般布朗运动

漂移项是指单位时间内变量变化的均值。方差项是指变量单位时间内的方差。

令漂移项为 a a a,方差项为 b 2 b^2 b2,可得变量 x x x 的一般布朗运动:
d x t = a d t + b d z t dx_t=adt+bdz_t dxt=adt+bdzt
Δ t \Delta t Δt 时间段内, x x x 的变化为:
Δ x = a Δ t + b ε Δ t \Delta x=a\Delta t+b\varepsilon\sqrt{\Delta t} Δx=aΔt+bεΔt
Δ t \Delta t Δt 也具有正态分布特征,均值为 a Δ t a\Delta t aΔt,方差为 b 2 Δ t b^2\Delta t b2Δt

股票价格的变化过程:几何布朗运动

d S t S t = μ d t + σ d z t d S t = μ S t d t + σ S t d z t \frac{dS_t}{S_t}=\mu dt+\sigma dz_t\\dS_t=\mu S_tdt+\sigma S_tdz_t StdSt=μdt+σdztdSt=μStdt+σStdzt

伊藤扩散

此时 x t x_t xt 的漂移项和方差项是时变的
d x t = a ( x t , t ) d t + b ( x t , t ) d z t , x 0 = x x t = x + ∫ 0 t a ( x s , s ) d s + ∫ 0 t b ( x s , s ) d z dx_t=a(x_t,t)dt+b(x_t,t)dz_t,x_0=x\\x_t=x+\int_0^ta(x_s,s)ds+\int_0^tb(x_s,s)dz dxt=a(xt,t)dt+b(xt,t)dzt,x0=xxt=x+0ta(xs,s)ds+0tb(xs,s)dz
若存在一个函数 G t = G ( x t , t ) G_t=G(x_t,t) Gt=G(xt,t),则此时:
d G t = ( ∂ G t ∂ x t a t + ∂ G t ∂ t + 1 2 ∂ 2 G t ∂ x t 2 b t 2 ) d t + ∂ G t ∂ x t b t d z t dG_t=(\frac{\partial G_t}{\partial x_t}a_t+\frac{\partial G_t}{\partial t}+\frac{1}{2}\frac{\partial^2 G_t}{\partial x_t^2}b_t^2)dt+\frac{\partial G_t}{\partial x_t}b_tdz_t dGt=(xtGtat+tGt+21xt22Gtbt2)dt+xtGtbtdzt
函数 G G G 也遵循伊藤过程,漂移项为 ∂ G t ∂ x t a t + ∂ G t ∂ t + 1 2 ∂ 2 G t ∂ x t 2 b t 2 \frac{\partial G_t}{\partial x_t}a_t+\frac{\partial G_t}{\partial t}+\frac{1}{2}\frac{\partial^2 G_t}{\partial x_t^2}b_t^2 xtGtat+tGt+21xt22Gtbt2,方差项为 ( ∂ G t ∂ x t ) 2 b t 2 (\frac{\partial G_t}{\partial x_t})^2b_t^2 (xtGt)2bt2

伊藤引理的应用:

  1. 股票价格为 S S S
    d S t = μ S t d t + σ S t d z t dS_t=\mu S_tdt+\sigma S_tdz_t dSt=μStdt+σStdzt
    G ( S , t ) G(S,t) G(S,t) 服从
    d G t = ( ∂ G t ∂ S t μ S t + ∂ G t ∂ t + 1 2 ∂ 2 G t ∂ S t 2 σ 2 S t 2 ) d t + ∂ G t ∂ S t σ S t d z t dG_t=(\frac{\partial G_t}{\partial S_t}\mu S_t+\frac{\partial G_t}{\partial t}+\frac{1}{2}\frac{\partial^2 G_t}{\partial S_t^2}\sigma^2 S_t^2)dt+\frac{\partial G_t}{\partial S_t}\sigma S_tdz_t dGt=(StGtμSt+tGt+21St22Gtσ2St2)dt+StGtσStdzt

  2. 股票对数价格 ln ⁡ S t \ln S_t lnSt
    d S t = μ S t d t + σ S t d z t G t = ln ⁡ S t , ∂ G t ∂ S t = 1 S t , ∂ 2 G t ∂ S t 2 = − 1 S t 2 , ∂ G t ∂ t = 0 d G t = d ln ⁡ S t = ( ∂ G t ∂ S t μ S t − ∂ 2 G t 2 ∂ S t 2 σ 2 S t 2 ) d t + ∂ G t ∂ S t σ S t d z t = ( μ − σ 2 2 ) d t + σ d z t ln ⁡ S t = ln ⁡ S 0 + ( μ − σ 2 2 ) t + σ z t S t = S 0 exp ⁡ [ ( μ − σ 2 2 ) t + σ z t ] dS_t=\mu S_tdt+\sigma S_tdz_t\\G_t=\ln S_t,\frac{\partial G_t}{\partial S_t}=\frac{1}{S_t},\frac{\partial^2 G_t}{\partial S_t^2}=-\frac{1}{S_t^2},\frac{\partial G_t}{\partial t}=0\\d G_t=d\ln S_t=(\frac{\partial G_t}{\partial S_t}\mu S_t-\frac{\partial^2 G_t}{2\partial S_t^2}\sigma^2S_t^2)dt+\frac{\partial G_t}{\partial S_t}\sigma S_tdz_t\\=(\mu-\frac{\sigma^2}{2})dt+\sigma dz_t\\\ln S_t=\ln S_0+(\mu-\frac{\sigma^2}{2})t+\sigma z_t\\S_t=S_0\exp[(\mu-\frac{\sigma^2}{2})t+\sigma z_t] dSt=μStdt+σStdztGt=lnSt,StGt=St1,St22Gt=St21,tGt=0dGt=dlnSt=(StGtμSt2St22Gtσ2St2)dt+StGtσStdzt=(μ2σ2)dt+σdztlnSt=lnS0+(μ2σ2)t+σztSt=S0exp[(μ2σ2)t+σzt]
    期望回报率、波动率( σ \sigma σ:每年0.2~0.4)

    同时有:
    ln ⁡ S T − ln ⁡ S t ∼ N [ ( μ − σ 2 2 ) ( T − t ) , σ 2 ( T − t ) ] ln ⁡ S T ∼ N [ ln ⁡ S t + ( μ − σ 2 2 ) ( T − t ) , σ 2 ( T − t ) ] E t ( S T ) = S t e μ ( T − t ) v a r t ( S T ) = S t 2 e 2 μ ( T − t ) [ e σ 2 ( T − t ) − 1 ] \ln S_T-\ln S_t\sim N[(\mu-\frac{\sigma^2}{2})(T-t),\sigma^2(T-t)]\\\ln S_T\sim N[\ln S_t+(\mu-\frac{\sigma^2}{2})(T-t),\sigma^2(T-t)]\\E_t(S_T)=S_te^{\mu(T-t)}\\var_t(S_T)=S_t^2e^{2\mu(T-t)}[e^{\sigma^2(T-t)}-1] lnSTlnStN[(μ2σ2)(Tt),σ2(Tt)]lnSTN[lnSt+(μ2σ2)(Tt),σ2(Tt)]Et(ST)=Steμ(Tt)vart(ST)=St2e2μ(Tt)[eσ2(Tt)1]
    S S S 提供的预期回报为 μ Δ t \mu\Delta t μΔt,连续复利的股票的预期回报为每年 μ − σ 2 / 2 \mu-\sigma^2/2 μσ2/2,短期内 Δ t \Delta t Δt 回报的算术平均值为 μ \mu μ,这些回报的几何平均值为 μ − σ 2 / 2 \mu-\sigma^2/2 μσ2/2

    从历史数据中估计波动率:

    1. 从之前的 τ \tau τ 年中获得 S 0 , S 1 , ⋯   , S n S_0,S_1,\cdots,S_n S0,S1,,Sn

    2. 定义连续复利收益: u i = ln ⁡ ( S i S i − 1 ) u_i=\ln(\frac{S_i}{S_{i-1}}) ui=ln(Si1Si)

    3. 计算 μ i \mu_i μi 的标准差 s s s
      s = 1 n − 1 ∑ i = 1 n ( μ i − μ ˉ ) 2 s=\sqrt{\frac{1}{n-1}\sum_{i=1}^n(\mu_i-\bar\mu)^2} s=n11i=1n(μiμˉ)2

    4. 历史波动率的估计为: σ ^ = s τ \hat\sigma=\frac{s}{\sqrt{\tau}} σ^=τ s

  3. 远期合约:
    F = S e r ( T − t ) ∂ F t ∂ S t = e r ( T − t ) , ∂ 2 F t ∂ S t 2 = 0 , ∂ F t ∂ t = − r S e r ( T − t ) d F = ( ∂ F t ∂ S t μ S t + ∂ F t ∂ t + 1 2 ∂ 2 F t ∂ S t 2 σ 2 S t 2 ) d t + ∂ F t ∂ S t σ S t d z t = ( μ S t e r ( T − t ) − r S e r ( T − t ) ) d t + e r ( T − t ) σ S t d z t = ( μ − r ) F d t + σ F d z t F=Se^{r(T-t)}\\\frac{\partial F_t}{\partial S_t}=e^{r(T-t)},\frac{\partial^2 F_t}{\partial S_t^2}=0,\frac{\partial F_t}{\partial t}=-rSe^{r(T-t)}\\dF=(\frac{\partial F_t}{\partial S_t}\mu S_t+\frac{\partial F_t}{\partial t}+\frac{1}{2}\frac{\partial^2 F_t}{\partial S_t^2}\sigma^2 S_t^2)dt+\frac{\partial F_t}{\partial S_t}\sigma S_tdz_t\\=(\mu S_te^{r(T-t)}-rSe^{r(T-t)})dt+e^{r(T-t)}\sigma S_tdz_t\\=(\mu-r)Fdt+\sigma Fdz_t F=Ser(Tt)StFt=er(Tt),St22Ft=0,tFt=rSer(Tt)dF=(StFtμSt+tFt+21St22Ftσ2St2)dt+StFtσStdzt=(μSter(Tt)rSer(Tt))dt+er(Tt)σStdzt=(μr)Fdt+σFdzt

布莱克—舒尔斯—默顿期权定价公式

布莱克—舒尔斯—默顿微分方程

方程推导

d S = μ S d t + σ S d z t Δ S = μ S Δ t + σ S Δ z t dS=\mu Sdt+\sigma Sdz_t\\\Delta S=\mu S\Delta t+\sigma S\Delta z_t dS=μSdt+σSdztΔS=μSΔt+σSΔzt

假设 f f f 是依赖于 S S S 的衍生证券价格,则 f f f 一定是 S 、 t S、t St 的函数:
d f = ( ∂ f ∂ S μ S + ∂ f ∂ t + 1 2 ∂ 2 f ∂ S 2 σ 2 S 2 ) d t + ∂ f ∂ S σ S d z Δ f = ( ∂ f ∂ S μ S + ∂ f ∂ t + 1 2 ∂ 2 f ∂ S 2 σ 2 S 2 ) Δ t + ∂ f ∂ S σ S Δ z , Δ z t = ε t Δ t df=(\frac{\partial f}{\partial S}\mu S+\frac{\partial f}{\partial t}+\frac{1}{2}\frac{\partial^2f}{\partial S^2}\sigma^2S^2)dt+\frac{\partial f}{\partial S}\sigma Sdz\\\Delta f=(\frac{\partial f}{\partial S}\mu S+\frac{\partial f}{\partial t}+\frac{1}{2}\frac{\partial^2f}{\partial S^2}\sigma^2S^2)\Delta t+\frac{\partial f}{\partial S}\sigma S\Delta z,\Delta z_t=\varepsilon_t\sqrt{\Delta t} df=(SfμS+tf+21S22fσ2S2)dt+SfσSdzΔf=(SfμS+tf+21S22fσ2S2)Δt+SfσSΔz,Δzt=εtΔt
为了消除 Δ z \Delta z Δz,我们可以构建一个包括一单位衍生证券空头 ∂ f ∂ S \frac{\partial f}{\partial S} Sf 单位标的证券多头的组合。令 Π \Pi Π 代表该投资组合的价值,则:
Π = − f + ∂ f ∂ S S Δ Π = − Δ f + ∂ f ∂ S Δ S , Δ S = μ S Δ t + σ S Δ z t Δ Π = − ( ∂ f ∂ S μ S + ∂ f ∂ t + 1 2 ∂ 2 f ∂ S 2 σ 2 S 2 ) Δ t − ∂ f ∂ S σ S Δ z + ∂ f ∂ S Δ S = − ( ∂ f ∂ S μ S + ∂ f ∂ t + 1 2 ∂ 2 f ∂ S 2 σ 2 S 2 ) Δ t − ∂ f ∂ S σ S Δ z + ∂ f ∂ S ( μ S Δ t + σ S Δ z ) = ( − ∂ f ∂ t − 1 2 ∂ 2 f ∂ S 2 σ 2 S 2 ) Δ t \Pi=-f+\frac{\partial f}{\partial S}S\\\Delta\Pi=-\Delta f+\frac{\partial f}{\partial S}\Delta S,\Delta S=\mu S\Delta t+\sigma S\Delta z_t\\\Delta\Pi=-(\frac{\partial f}{\partial S}\mu S+\frac{\partial f}{\partial t}+\frac{1}{2}\frac{\partial^2f}{\partial S^2}\sigma^2S^2)\Delta t-\frac{\partial f}{\partial S}\sigma S\Delta z+\frac{\partial f}{\partial S}\Delta S\\=-(\frac{\partial f}{\partial S}\mu S+\frac{\partial f}{\partial t}+\frac{1}{2}\frac{\partial^2f}{\partial S^2}\sigma^2S^2)\Delta t-\frac{\partial f}{\partial S}\sigma S\Delta z+\frac{\partial f}{\partial S}(\mu S\Delta t+\sigma S\Delta z)\\=(-\frac{\partial f}{\partial t}-\frac{1}{2}\frac{\partial^2f}{\partial S^2}\sigma^2S^2)\Delta t Π=f+SfSΔΠ=Δf+SfΔS,ΔS=μSΔt+σSΔztΔΠ=(SfμS+tf+21S22fσ2S2)ΔtSfσSΔz+SfΔS=(SfμS+tf+21S22fσ2S2)ΔtSfσSΔz+Sf(μSΔt+σSΔz)=(tf21S22fσ2S2)Δt
在没有套利机会的条件下: Δ Π = r Π Δ t \Delta\Pi=r\Pi\Delta t ΔΠ=rΠΔt,得:
( − ∂ f ∂ t − 1 2 ∂ 2 f ∂ S 2 σ 2 S 2 ) Δ t = r ( − f + ∂ f ∂ S S ) Δ t ∂ f ∂ t + r S ∂ f ∂ S + 1 2 ∂ 2 f ∂ S 2 σ 2 S 2 = r f (-\frac{\partial f}{\partial t}-\frac{1}{2}\frac{\partial^2f}{\partial S^2}\sigma^2S^2)\Delta t=r(-f+\frac{\partial f}{\partial S}S)\Delta t\\\frac{\partial f}{\partial t}+rS\frac{\partial f}{\partial S}+\frac{1}{2}\frac{\partial^2f}{\partial S^2}\sigma^2S^2=rf (tf21S22fσ2S2)Δt=r(f+SfS)Δttf+rSSf+21S22fσ2S2=rf
边界条件为 f ( T ) = max ⁡ ( S ( T ) − K , 0 ) f(T)=\max(S(T)-K,0) f(T)=max(S(T)K,0)。这就是著名的布莱克—舒尔斯微分方程,它适用于其价格取决于标的证券价格S的所有衍生证券的定价。

风险中性定价原理

由BSM微分方程,衍生证券的价值独立于风险收益偏好,即所有投资者都是风险中性的。
尽管风险中性假定仅仅是为了求解布莱克——舒尔斯微分方程而作出的人为假定,但通过这种假定所获得的结论不仅适用于投资者风险中性情况,也适用于投资者厌恶风险的所有情况。

应用风险中性定价:

  1. 假设标的资产的期望收益率为无风险利率
  2. 计算衍生产品收益的期望
  3. 用无风险利率对期望收益进行贴现

对股票远期合约的应用:合约到期时,远期合约的值为 S T − K S_T-K STK,则 t t t 时刻远期合约的值为:
f = e − r ( T − t ) E ^ ( S T − K ) = e − r ( T − t ) E ^ ( S T ) − K e − r ( T − t ) = e − r ( T − t ) S e r ( T − t ) − K e − r ( T − t ) = S − K e − r ( T − t ) f=e^{-r(T-t)}\hat E(S_T-K)\\=e^{-r(T-t)}\hat E(S_T)-Ke^{-r(T-t)}\\=e^{-r(T-t)}Se^{r(T-t)}-Ke^{-r(T-t)}\\=S-Ke^{-r(T-t)} f=er(Tt)E^(STK)=er(Tt)E^(ST)Ker(Tt)=er(Tt)Ser(Tt)Ker(Tt)=SKer(Tt)
对欧式看涨期权的应用:假设三个月期的无风险连续复利年利率为10%,A股票(无红利)目前价格为10,假设三个月后,价格要么是9,要么是11,要找出一份3个月期行权价格为10.5的A股票欧式看涨期权价值,设风险中性概率为 p p p
10 e 10 % × 0.25 = 11 p + 9 ( 1 − p ) p = 0.6266 f = e − 10 % × 0.25 ( 0.5 × 0.6266 + 0 ) = 0.31 10e^{10\%\times0.25}=11p+9(1-p)\\p=0.6266\\f=e^{-10\%\times0.25}(0.5\times0.6266+0)=0.31 10e10%×0.25=11p+9(1p)p=0.6266f=e10%×0.25(0.5×0.6266+0)=0.31

定价公式

无收益资产欧式看涨期权的定价公式

∂ f ∂ t + r S t ∂ f ∂ S + 1 2 ∂ 2 f ∂ S 2 σ 2 S t 2 = r f t \frac{\partial f}{\partial t}+rS_t\frac{\partial f}{\partial S}+\frac{1}{2}\frac{\partial^2f}{\partial S^2}\sigma^2S_t^2=rf_t tf+rStSf+21S22fσ2St2=rft

在风险中性条件下,欧式看涨期权到期时( T T T 时刻)的期望值为:
E ^ [ max ⁡ ( S T − K , 0 ) ] \hat E[\max(S_T-K,0)] E^[max(STK,0)]
现值为:
c = e − r ( T − t ) E ^ [ max ⁡ ( S T − K , 0 ) ] c=e^{-r(T-t)}\hat E[\max(S_T-K,0)] c=er(Tt)E^[max(STK,0)]
对数股票价格的分布为:
ln ⁡ S T ∼ N [ ln ⁡ S + ( r − σ 2 2 ) ( T − t ) , σ 2 ( T − t ) ] \ln S_T\sim N[\ln S+(r-\frac{\sigma^2}{2})(T-t),\sigma^2(T-t)] lnSTN[lnS+(r2σ2)(Tt),σ2(Tt)]
求解得:
c = S N ( d 1 ) − K e − r ( T − t ) N ( d 2 ) 其 中 : d 1 = ln ⁡ ( S K ) + ( r + σ 2 2 ) ( T − t ) σ T − t , d 2 = ln ⁡ ( S K ) + ( r − σ 2 2 ) ( T − t ) σ T − t = d 1 − σ T − t c=SN(d_1)-Ke^{-r(T-t)}N(d_2)\\其中:d_1=\frac{\ln(\frac{S}{K})+(r+\frac{\sigma^2}{2})(T-t)}{\sigma\sqrt{T-t}},d_2=\frac{\ln(\frac{S}{K})+(r-\frac{\sigma^2}{2})(T-t)}{\sigma\sqrt{T-t}}=d_1-\sigma\sqrt{T-t} c=SN(d1)Ker(Tt)N(d2)d1=σTt ln(KS)+(r+2σ2)(Tt),d2=σTt ln(KS)+(r2σ2)(Tt)=d1σTt
N ( ⋅ ) N(·) N() 为标准正态分布变量的累积概率密度函数,且 N ( − x ) = 1 − N ( x ) N(-x)=1-N(x) N(x)=1N(x)

Δ = N ( d 1 ) \Delta=N(d_1) Δ=N(d1) 是复制交易策略中股票的数量, S N ( d 1 ) SN(d_1) SN(d1) 是股票的市值, − K e − r ( T − t ) N ( d 2 ) -Ke^{-r(T-t)}N(d_2) Ker(Tt)N(d2) 是复制交易策略中负债的价值。

N ( d 2 ) N(d_2) N(d2) 是在风险中性世界中 S T S_T ST 大于 K K K 的概率,或者说欧式看涨期权被执行的风险中性概率,因此 K e − r ( T − t ) N ( d 2 ) Ke^{-r(T-t)}N(d_2) Ker(Tt)N(d2) 是执行价格乘执行价格被支付的风险中性概率之后再贴现到当前时刻的现值。

从金融工程的角度看,欧式看涨期权可以拆分为或有资产看涨期权多头和或有现金看涨期权空头, S N ( d 1 ) SN(d_1) SN(d1) 是或有资产看涨期权多头的价值, − K e − r ( T − t ) N ( d 2 ) -Ke^{-r(T-t)}N(d_2) Ker(Tt)N(d2) K K K 份或有现金看涨期权空头的价值。

同时,根据远期价格和现货价格的关系, S = F e − r ( T − t ) S=Fe^{-r(T-t)} S=Fer(Tt):
c = F e − r ( T − t ) N ( d 1 ) − K e − r ( T − t ) N ( d 2 ) = e − r ( T − t ) [ F N ( d 1 ) − K N ( d 2 ) ] d 1 = ln ⁡ ( F K ) + σ 2 2 ( T − t ) σ T − t , d 2 = d 1 − σ T − t c=Fe^{-r(T-t)}N(d_1)-Ke^{-r(T-t)}N(d_2)=e^{-r(T-t)}[FN(d_1)-KN(d_2)]\\d_1=\frac{\ln(\frac{F}{K})+\frac{\sigma^2}{2}(T-t)}{\sigma\sqrt{T-t}},d_2=d_1-\sigma\sqrt{T-t} c=Fer(Tt)N(d1)Ker(Tt)N(d2)=er(Tt)[FN(d1)KN(d2)]d1=σTt ln(KF)+2σ2(Tt),d2=d1σTt
对于平值期权, S = K e − r ( T − t ) S=Ke^{-r(T-t)} S=Ker(Tt)
c / S = N ( σ 2 ( T − t ) ) − N ( − σ 2 ( T − t ) ) c/S=N(\frac{\sigma}{2}\sqrt{(T-t)})-N(-\frac{\sigma}{2}\sqrt{(T-t)}) c/S=N(2σ(Tt) )N(2σ(Tt) )
平值期权的看涨期权价格与股价之比与股价、利率都无关,只与波动率和时间有关。

无收益资产美式看涨期权的定价公式

在标的资产无收益情况下, C t = c t C_t=c_t Ct=ct,无收益资产美式看涨期权的价值 C t C_t Ct
C = S N ( d 1 ) − K e − r ( T − t ) N ( d 2 ) C=SN(d_1)-Ke^{-r(T-t)}N(d_2) C=SN(d1)Ker(Tt)N(d2)

无收益资产欧式看跌期权的定价公式

根据欧式看涨期权和看跌期权之间存在平价关系,可以得到无收益资产欧式看跌期权的定价公式:
c + K e − r ( T − t ) = p + S p = S N ( d 1 ) − K e − r ( T − t ) N ( d 2 ) + K e − r ( T − t ) − S = S ( N ( d 1 ) − 1 ) + K e − r ( T − t ) ( 1 − N ( d 2 ) ) = K e − r ( T − t ) N ( − d 2 ) − S N ( − d 1 ) c+Ke^{-r(T-t)}=p+S\\p=SN(d_1)-Ke^{-r(T-t)}N(d_2)+Ke^{-r(T-t)}-S\\=S(N(d_1)-1)+Ke^{-r(T-t)}(1-N(d_2))\\=Ke^{-r(T-t)}N(-d_2)-SN(-d_1) c+Ker(Tt)=p+Sp=SN(d1)Ker(Tt)N(d2)+Ker(Tt)S=S(N(d1)1)+Ker(Tt)(1N(d2))=Ker(Tt)N(d2)SN(d1)
同样的,用远期价格替代现货价格:
p = K e − r ( T − t ) N ( − d 2 ) − F e − r ( T − t ) N ( − d 1 ) = e − r ( T − t ) [ K N ( − d 2 ) − F N ( − d 1 ) ] p=Ke^{-r(T-t)}N(-d_2)-Fe^{-r(T-t)}N(-d_1)\\=e^{-r(T-t)}[KN(-d_2)-FN(-d_1)] p=Ker(Tt)N(d2)Fer(Tt)N(d1)=er(Tt)[KN(d2)FN(d1)]

有收益资产欧式期权的定价公式
  1. 当标的证券已知收益的现值为 I I I 时,只要用 ( S − I ) (S-I) (SI) 代替 S S S
  2. 当标的证券的收益为按连续复利计算的固定收益率 q q q(单位为年)时,只要用 S e − q ( T − t ) Se^{-q(T-t)} Seq(Tt) 代替 S S S

对于欧式期货期权:
c = e − r ( T − t ) [ F e − q ( T − t ) N ( d 1 ) − K N ( d 2 ) ] p = e − r ( T − t ) [ K N ( − d 2 ) − F e − q ( T − t ) N ( − d 1 ) ] d 1 = ln ⁡ ( F K ) + ( q + σ 2 2 ) ( T − t ) σ T − t , d 2 = d 1 − σ T − t c=e^{-r(T-t)}[Fe^{-q(T-t)}N(d_1)-KN(d_2)]\\p=e^{-r(T-t)}[KN(-d_2)-Fe^{-q(T-t)}N(-d_1)]\\d_1=\frac{\ln(\frac{F}{K})+(q+\frac{\sigma^2}{2})(T-t)}{\sigma\sqrt{T-t}},d_2=d_1-\sigma\sqrt{T-t} c=er(Tt)[Feq(Tt)N(d1)KN(d2)]p=er(Tt)[KN(d2)Feq(Tt)N(d1)]d1=σTt ln(KF)+(q+2σ2)(Tt),d2=d1σTt

有收益资产美式期权的定价公式
  1. 美式看涨期权:当标的资产有收益时,美式看涨期权就有提前执行的可能,我们可用一种近似处理的方法。该方法是先确定提前执行美式看涨期权是否合理。若不合理,则按欧式期权处理;若在 t n t_n tn 提前执行有可能是合理的,则要分别计算在 T T T 时刻和 t n t_n tn 时刻到期的欧式看涨期权的价格,然后将二者之中的较大者作为美式期权的价格。
  2. 美式看跌期权:由于收益虽然使美式看跌期权提前执行的可能性减小,但仍不排除提前执行的可能性,因此有收益美式看跌期权的价值仍不同于欧式看跌期权,它也只能通过较复杂的数值方法来求出。

BSM期权定价公式的应用

  1. 评估组合保险成本
  2. 给可转换债券定价:可转换债券是一种可由债券持有者转换成股票的债券,因此可转换债券相当于一份普通的公司债券和一份看涨期权的组合。
  3. 为认股权证估值:认股权证相当于一份看涨期权
  4. Employee stock options定价

BSM期权定价公式的参数估计

估计无风险利率:首先,要选择正确的利率,一般来说,在美国人们大多选择美国国库券利率作为无风险利率的估计值;在中国,可以从银行间债券市场的价格中确定国债即期利率作为无风险利率,或是用货币市场上的无风险利率。其次,要注意选择利率期限,如果利率期限结构曲线倾斜严重,那么不同到期日的收益率很可能相差很大,必须选择距离期权到期日最近的利率作为无风险利率。

估计标的资产价格的波动率:历史法(历史波动率)和隐含法(隐含波动率)。

BSM期权定价的基本假设

  1. 不存在无风险套利机会
  2. 允许卖空标的证券,并可完全使用所得收入
  3. 没有交易费用和税收,所有证券均可无限分割
  4. 证券交易是连续的,价格变动也是连续的
  5. 股票价格遵循几何布朗运动, μ 、 σ \mu、\sigma μσ 为常数。
  6. 在衍生证券有效期内,无风险连续复利利率 r r r 为常数
  7. 在衍生证券有效期内标的证券无现金收益
  • 3
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值