高数 | 【多元函数微分学】多元函数求极限方法总结

本文详细探讨了多元函数极限的两种定义及其可能存在的问题,强调了定义方式选择对结果的影响。同时,列举了多元函数求极限的常见方法,如利用极限性质、有理化和整体替换。此外,还讨论了极坐标的运用以及何时可以将问题转化为一元函数处理。对于极限不存在的情况,指出必须通过不同路径来验证。最后,提到了如何利用多重积分定义求解极限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

一、多元函数极限的定义

存在的问题:有两种定义方式分别以 聚点/ 去心领域去定义重极限,不同的定义方式可能导致结果不同

 用 定义证明的例题选解

 

二、多元函数求极限的方法

1、利用极限性质(四则运算法则、夹逼准则)

夹逼准则:多是夹为0。有界函数放缩为固定值/常用不等式?去分母?

2、消去分母中极限为 0 的因子 —— 有理化,等价无穷小代换

3、有界函数x无穷小量=0

4、直接代入:先代入看看是不是未定式!如果不是那就是答案

 

 

极坐标 都可以考虑极坐标 !

注意!x和y次数相同!

 

整体替换化为一元函数:可以分拆,可以整体代换的重极限可以尝试。当变成一元函数那方法就多了,如:等价,洛必达,泰勒......

注意:多元函数洛必达教材没有,不可用!

 

 1)初步判断:三次比二次 —— 极限应为 0

       利用

      

        注:本题若用极坐标,只是恰巧和答案求得结果一样,过程是错误的!!!

      

       因为当 ρ 趋向于 0时 ,θ 也在变,牵扯到了一致性的问题,超出了考研要求。

        

 2)

      

 3)

      

 

三、多元函数的极限不存在

注意

只能最多说明极限不存在,不能说明极限存在!

强行找几条路径认为存在是逻辑错误,因为路径根本找不完。

—— 沿两种不同路径极限不同。

 

 四、利用多重积分定义求极限

 原文见

 多元函数求极限方法总结 - 知乎

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西皮呦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值