高数篇:11.01多元函数求极限方法

本文详细介绍了多元函数求极限的四种方法:通过极坐标的转换简化问题,将多元函数转化为一元函数处理,利用夹逼定理求解特定类型的极限,以及运用无穷小替换来探讨极限的存在性。这些方法对于解决复杂的多元函数极限问题十分实用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高数篇:11.01多元函数求极限方法

转化为极坐标

  • ρ趋于0时与θ无关
    在这里插入图片描述
    注:遇见函数式x和y都是幂函数的,都可以用这个方法。

转化为一元函数

在这里插入图片描述
类似第一种转换成极坐标的形式。

夹逼定理

在这里插入图片描述
注:一般应用于函数式为分子为三角函数,分母为幂函数。

无穷小替换

在这里插入图片描述

定义法

在这里插入图片描述

证明极限不存在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值