空间解析几何 | 向量、数量积、向量积、混合积、距离公式

一、向量及其运算

1、空间直角坐标系

2、向量及其有关概念

3、坐标表示向量

 

4、向量长度与方向余弦


二、向量的数量积、向量积和混合积

2.1 数量积(点积、内积)

 注:

    通过公式我们可以发现,两个向量的数量积就是一个数量

    数量积又称为点积或者内积

    ex: 在直角坐标系 {O; i, j, k} 中,设 α = (a1, a2, a3), β = (b1, b2, b3),

        α • β = (a1i + a2j + a3k)  (b1i + b2j + b3k) = a1b1 + a2b2 + a3b3

        即两向量的数量积之和等于它们对应坐标的乘积之和。

 

 

 2.2 向量积(叉积外积)

 注:

          向量积是一个向量

     向量积又称为叉积外积

     ex: 在直角坐标系 {O; i, j, k} 中,设 α = (a1, a2, a3), β = (b1, b2, b3),

     α χ β = (a1i + a2j + a3kχ (b1i + b2j + b3k)

          = (a2b3 - a3b2) i - (a1b3 - a3b1) j + (a1b2 - a2b1) k

 

 注:

 

 2.3 向量的混合积

注:

   向量α β 向量积,再与向量 γ 数量积,其结果为一个数量

空间向量基本定理)任意给定空间中三个不共面向量 α, β, γ,则空间中任一

      向量 ν 可以用 α, β, γ 唯一线性表示,即存在唯一一组实数 x, y, z 使

        ν = xα + yβ + zγ

 

 


 

三、距离公式

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西皮呦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值