ICML 2021论文数据分析:谷歌第一,国内北大论文最多

转自:机器之心

ICML 2021 官方公布了接收论文结果,共有 5513 篇论文投稿,共有 1184 篇被接收(包括 1018 篇短论文和 166 篇长论文),接受率 21.48%。 

这应该是 ICML 近年来接受率最低的一届,因为不久之前,ICML 主办方还在准备削减本届论文接收数量。

其实和去年的 21.80% 相比,差别并不大。

无论如何,本届的论文接收结果已经公布,近日大会官方也放出了论文接收列表。

作为机器学习领域最重要的会议之一,在该会议上发表论文的研究者也会备受关注。

论文接收结果:https://icml.cc/Conferences/2021/AcceptedPapersInitial

在论文接收结果公布之后,Criteo AI Lab 的机器学习科学家 Sergey Ivanov 照例对这些入选论文做了统计分析,包括入选论文最多的作者、机构等。

下面,就让我们看下有没能令人眼前一亮的统计结果。

ICML 2021 论文接收结果统计

按照作者排名来看,排名第一的作者为日本理化学研究所先进智能研究中心主任 Masashi Sugiyama,14 篇,这是他连续第二年排名第一位。

来自 UC 伯克利的 Sergey Levine 以 13 篇论文排名第二;杨卓然、汪昭然、 牛罡分别以 11 篇论文并列第三。

按机构来划分,谷歌、麻省理工、斯坦福、UC伯克利、微软位列前五,其中谷歌以 109 篇论文霸榜,DeepMind 排名第九。

北京大学以 31 篇排在第 11 位 ,清华大学以 26 篇排在第 15 位。

按照国家来划分,美国以 729 篇位居榜首,中国以 159 篇排名第二,英国 124 篇排名第三、加拿大 79 篇、德国 48 篇分别排名第四、第五。

美国排名靠前的机构或组织,排名前三的分别是:Google、MIT、斯坦福。

中国排名第一位的是北京大学,31 篇。之后排名依次为清华大学(26 篇)、中科大(14 篇)、华为(14 篇)、上海交大(13 篇)、腾讯(10 篇)、阿里巴巴(10 篇)、浙江大学(9 篇)、香港大学(6 篇)。

大学 VS 产业:学术界有 935 篇论文、产业有 352 篇,这意味着大多数论文至少与一所大学有合作关系。

只计算每个国家的大学来排名:排名前三位的分别是美国、中国、英国。

排名前五的大学分别为:麻省理工学院、斯坦福大学、UC伯克利大学、CMU、普林斯顿大学。北京大学以 31 篇排名第 7。

按照公司来划分,排名第 1 到 10 位的公司分别为 Google、Microsoft、DeepMind、FB、Amazon、IBM、华为、腾讯 、Apple、 阿里巴巴。

每篇论文的作者或组织数量排名,每篇论文中作者有 3 个的排名第一,301 篇;每篇论文中组织数有 1 个的排名第一,393 篇。

遗憾的是,当前的论文接收结果的分析中,没有对研究主题的数据统计。这应该是 AI 研究者们最为关注的主题。

参考链接:

https://twitter.com/SergeyI49013776/status/1400377019024695300

DLer-ICML2021论文分享交流群已成立!

大家好,这是ICML2021论文分享群里,群里会第一时间发布ICML2021的论文解读和交流分享会

进群请备注:研究方向+学校/公司+昵称(如机器学习+上交+小明)

???? 长按识别,邀请您进群!

随着机器学习热度的增加和其中“中国力量”的逐渐强大,在各大顶级会议上有越来越多的中国组织排名靠前,大有争夺头把交椅的势头。 比如,本次ICML,清华大学有 12 篇论文被收录;华裔作者的数量也令人惊讶,如佐治亚理工学院终身副教授、机器学习中心副主任宋乐署名的就有8篇论文。 而宋乐教授的另外一个身份,就是蚂蚁金服人工智能部研究员。 蚂蚁金服成为ICML 上“中国力量”的代表之一,为大会奉献了8篇论文。其中,六篇含金量十足的Oral Paper,成为议程上研讨会的主角,接受与会专家的热烈讨论。 这些论文几乎每篇署名作者都有世界级学术专家。比如人工智能教父,蚂蚁金服科学智囊团主席迈克尔·欧文·乔丹 (Michael I. Jordan),以及上面提到的佐治亚理工学院机器学习中心副主任,在蚂蚁金服人工智能部担任研究员的宋乐教授等。 不仅如此,蚂蚁金服还在本届大会上展示了多项核心技术和产品:基于强大的深度学习能力开发的定损宝、自研的图结构处理Graph Embedding 技术,以及基于图像处理和自然语言理解技术开发的智能客服等。特别是定损宝,将图像识别技术和车险领域首次结合,每年有望为中国保险公司节约数十亿元人民币成本,备受参与ICML 2018 的业界人士关注。 和顶级学术界人才深度合作,凸显蚂蚁金服在机器学习方面的能力,而将学术成就快速转化为商业级产品更是证明了蚂蚁金服的的决心——人才的吸引力和学术商用的两手并重,让首次参会的蚂蚁金服就成为了这场顶级学术会议上的耀眼新星。 本下载是第一论文——《Learning to Explain: An Information-Theoretic Perspective on Model Interpretation》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值